第五章机械加工表面质量
零件的机械加工质量不仅指加工精度,而且包括加工表面质量。
一、加工表面质量对机器零件使用性能的影响(论述题)
(一)表面质量对零件耐磨性的影响
1.表面粗糙度对耐磨性的影响
表面粗糙度太大和太小都不耐磨。
表面粗糙度太大,接触表面的实际压强增大,粗糙不平的凸峰相互咬合、挤裂、切断,故磨损加剧。
表面粗糙度太小,也会导致磨损加剧。因为表面太光滑,存不住润滑油,接触面间不易形成油膜,容易发生分子粘结而加剧磨损。
2.表面纹理对耐磨性的影响
表面纹理的形状及刀纹方向对耐磨性的影响,纹理形状及刀纹方向影响有效接触面积与润滑液的存留
3.冷作硬化对耐磨性的影响
加工表面的冷作硬化,一般能提高零件的耐磨性。但是并非冷作硬化程度越高,耐磨性就越高。这是因为过分的冷作硬化,将引起金属组织过度“疏松”,在相对运动中可能会产生金属剥落,在接触面间形成小颗粒,使零件加速磨损。
(二)表面质量对零件疲劳强度的影响
1.表面粗糙度对疲劳强度的影响
表面粗糙度越大,抗疲劳破坏的能力越差。
对承受交变载荷零件的疲劳强度影响很大。在交变载荷作用下,表面粗糙度的凹谷部位容易引起应力集中,产生疲劳裂纹。
表面粗糙度值越小,表面缺陷越少,工件耐疲劳性越好;反之,加工表面越粗糙,表面的纹痕越深,纹底半径越小,其抗疲劳破坏的能力越差。
材料对应力集中敏感程度不同。
2.表面层金属的力学物理性质对耐疲劳性的影响
适度的表面层冷作硬化能提高零件的疲劳强度。
残余应力有拉应力和压应力之分,残余拉应力容易使已加工表面产生裂纹并使其扩展而降低疲劳强度。
残余压应力则能够部分地抵消工作载荷施加的拉应力,延缓疲劳裂纹的扩展,从而提高零件的疲劳强度。
(三)表面质量对耐蚀性的影响
1.表面粗糙度对耐腐蚀性的影响
零件表面越粗糙,越容易积聚腐蚀性物质,凹谷越深,渗透与腐蚀作用越强烈。减小零件表面粗糙度,可以提高零件的耐腐蚀性能。
2.表面金属的力学物理性质对耐腐蚀性能的影响
零件表面残余压应力使零件表面紧密,腐蚀性物质不易进入,可增强零件的耐腐蚀性,而表面残余拉应力则降低零件耐腐蚀性。
(四)表面质量对零件配合质量的影响
(1)表面粗糙度对零件配合精度的影响
表面粗糙度较大,则降低了配合精度。
(2)表面残余应力对零件工作精度的影响
表面层有较大的残余应力,就会影响它们精度的稳定性。
名词解释:
韧性材料:工件材料韧性愈好,金属塑性变形愈大,加工表面愈粗糙。故对中碳钢和低碳钢材料的工件,为改善切削性能,减小表面粗糙度,常在粗加工或精加工前安排正火或调质处理。
脆性材料:加工脆性材料时,其切削呈碎粒状,由于切屑的崩碎而在加工表面留下许多麻点,使表面粗糙。
工件的磨削表面是由砂轮上大量磨粒刻划出无数极细的刻痕形成的,工件单位面积上通过的砂粒数越多,则刻痕越多,刻痕的等高性越好,表面粗糙度值越小。
砂轮转速越高,单位时间内通过被磨表面的磨粒数越多,表面粗糙度值就越小。工件转速增大,通过加工表面的磨粒数减少,因此表面粗糙度值增大。
砂轮的转速↑→材料塑性变形↓→表面粗糙度值↓;
磨削深度↑工件速度↑→塑性变形↑→表面粗糙度值↑;
机械加工时,工件表面层金属受到切削力的作用产生强烈的塑性变形,使晶格扭曲,晶粒间产生剪切滑移,晶粒被拉长、纤维化甚至碎化,从而使表面层的强度和硬度增加,这种现象称为加工硬化,又称冷作硬化和强化。
切削加工中,由于切削热的作用,在工件的加工区及其邻近区域产生了一定的温升。磨削加工时,表面层有很高的温度,当温度达到相变临界点时,表层金属就发生金相组织变化,强度和硬度降低、产生残余应力、甚至出现微观裂纹,使工件表面呈现氧化膜颜色。这种现象称磨削烧伤。
磨削时工件表面温度超过相变临界温度时,则马氏体转变为奥氏体。在冷却液作用下,工件最外层金属会出现二次淬火马氏体组织。其硬度比原来的回火马氏体高,但很薄,其下为硬度较低的回火索氏体和屈氏体。由于二次淬火层极薄,表面层总的硬度是降低的,这种现象称为淬火烧伤。
磨削时,如果工件表面层温度只是超过原来的回火温度,则表层原来的回火马氏体组织将产生回火现象而转变为硬度较低的回火组织(索氏体或屈氏体),这种现象称为回火烧伤。磨削时,当工件表面层温度超过相变临界温度时,则马氏体转变为奥氏体。若此时无冷却液,表层金属空冷冷却比较缓慢而形成退火组织。硬度和强度均大幅度下降。这种现象称为退火烧伤。
机械加工中工件表面层组织发生变化时,在表面层及其与基体材料的交界处会产生互相平衡的弹性力。这种应力即为表面层的残余应力。
磨削裂纹常与烧伤同时出现。
滚压加工可以加工外圆、孔、平面及成型表面,通常在普通车床、转塔车床或自动车床上进行。
自激振动的激振机理:再生原理、振型耦合原理、负摩擦原理、滞后原理。