八年级数学期末测试卷
一、选择题(本大题共6题,每题2分,满分12分)
1.已知直线yxb, 当b0时, 直线不经过„„„„„„„„„„„„( ) (A) 第一象限; (B) 第二象限; (C) 第三象限; (D) 第四象限. 2.两条对角线相等且互相平分的四边形是„„„„„„„„„„„„„„( ) (A)平行四边形; (B)矩形; (C)菱形; (D)正方形.
3.下列判断中,不正确的是„„„„„„„„„„„„„„„„„„„„( )
(A)ABBA0; (B)如果ABCD,则ABCD; (C)abccba; (D)a(bc)(ab)c.
4.下列事件中,是必然事件的是„„„„„„„„„„„„„„„„„„( ) (A)购买一张彩票中奖一百万元;
(B)打开电视机,任选一个频道,正在播新闻; (C)在地球上,上抛的篮球会下落;
(D)掷两枚质地均匀的正方体骰子,点数之和一定大于6.
5.抛掷两枚硬币,则正面全都朝上的概率是„„„„„„„„„„„„„( ) (A)
1121 ; (B) ; (C); (D). 23346.在一个凸多边形中,它的内角中最多有n个锐角,则n为„„„„„„„( ) (A)2; (B)3 ; (C)4 ; (D)5. 二、填空题(本大题共12题,每题3分,满分36分)
x247.如果分式的值为0,那么x=__________.
x28.方程(x+2)x1=0的解是 .
9.平行四边形ABCD的周长为18cm,它的两条高分别为1cm和2cm,则它的面积是 cm.
10.已知矩形一条对角线长8cm,两条对角线的一个交角是60°,则矩形较短的边长为 cm.
11. 梯形上、下两底长分别为4cm和6cm,则梯形的中位线长 cm.
12. 已知等腰梯形的两底长分别为6cm和9cm,一个底角为60° ,则腰长 cm. 13. 梯形上底长3cm,下底长7cm,梯形被中位线分成的两部分的面积比是 .
2
14. 在四边形ABCD中,向量AB、BC、CD的和向量是 .
15. 在平行四边形ABCD中,若ADa,ABb,则DB (用a和b表示).
16.“2008年8月21日的最高气温将达到35以上”是 事件. 17.抛一枚质地均匀的硬币,正面朝上的概率为(填“对”或“错”).
18.从长度为2、3、5、7的四条线段中任意选取三条,这三条线段能构成三角形的概率等于 . 三、解答题(本大题共4题,第19、20题每题5分,第21、22题每题6分,满分22分)
19.已知:矩形ABCD,对角线AC、BD相交于点O.
AOBCD1,因此,抛10次硬币,必有5次正面朝上________2(1)利用图中的向量表示:BCCD_____________; (2)利用图中的向量表示:AOAD_____________;
(3)如果AB5,BC12,则BO___________.
20.盒中有大小相同的6个小球,其中红球3个,黄球1个,白球2个. (1)若从中任取一个小球,求取出白球的概率; (2)若从中任取两个小球,求取出全是红球的概率.
x3y12,21.解方程组:22x2xy3y0
(1)(2)
22. 一次函数ykxb与反比例函数ym的图象相交于A(-2,1)B(1,n)两点,分别求这二
x个函数解析式.
四、解答题(本大题共4题,第23、24题每题7分,第25、26题每题8分,满分30分)
23.已知:正方形ABCD中,对角线AC、BD相交于点O,BAC的平分线AF交BD于点E,交BC于点F.1求证:OECF.2
AOEBFDC24.为保证万无一失,抗震指挥部决定用甲、乙两辆卡车将救灾物资运往5.12大地震震中映秀镇,两车同时从成都双流机场出发,甲车从东线行程180公里到达映秀镇,乙车绕道从西线行程720公里到达映秀镇,结果比甲车晚20小时到达映秀镇.已知乙车的速度比甲车的速度每小时快6公里,同时还知道,尽管道路损毁严重,但两车的速度都大于16公里/小时,求甲车的速度?
25.如图,已知点E是矩形ABCD的边CB延长线上一点,且CECA,联结AE,过点C作CFAE,垂足为点F,联结BF、FD.(1)求证:FBC≌FAD;(2)联结BD,若求FC的值.
第25题
FB3,且AC10,BD5DAFEBC
26.在梯形ABCD中,∠ABC=90,AD∥BC,BC>AD,AB=8cm,BC=18cm,CD=10 cm,点P从点B开始沿
BC边向终点C以每秒3cm的速度移动,点Q从点D开始沿DA边向终点A以每秒2cm的速度移动,设运动
时间为t秒.
(1)求四边形ABPQ为矩形时t的值;
(2)若题设中的“BC=18cm”改变为“BC=kcm”,其它条件都不变,要使四边形PCDQ是等腰梯形,求t与k的函数关系式,并写出k的取值范围;
(3)在移动的过程中,是否存在t使P、Q两点的距离为10cm ,若存在求t的值. 若不存在请说明理由?
参及评分说明
一、选择题:(本大题共6题,每题2分,满分12分)
1.(B); 2.(B); 3.(A); 4.(C); 5.(D); 6.(B). 二、填空题:(本大题共12题,每题3分,满分36分)
AQDBPC27. -2; 8. x=1; 9.6; 10. 4; 11.5; 12. 3; 13. ; 14. AD ;
3115.ba; 16.随机; 17.错; 18..
4三、解答题:(本大题共4题,其中第19、20题每题5分,第21、22题每题6分,)
19.(1)BD 1分;(2)DO 2分;(3)6.5 2分.
20.(1)
11 2分;(2) 3分. 3521.解:由(2)得:(x3y)(xy)0„„„„„„„„„„„„„„„„„„1分.
原方程组可变形为:(Ⅰ)x3y12x3y12 或(Ⅱ)„„„2分.
x3y0xy0
由(Ⅰ)得x6„„„„„1分 由(Ⅱ)得y2x6y6„„„„„„„1分.
原方程组的解为x6 x6y2或y6„„„„„„„„„„„„„„„„1分.
22.解:(1) 将点A的坐标(-2,1)代入ymx,得m2„„„„„„1分. ∴ y2 „„„„„„„„„„1分.
x 将点B的坐标(1,n)代入y2x,得n2 故点B的坐标为(1,-2) „„„„„„„„„„1分. 将(-2,1)和(1,-2)分别代入ykxb,得
2kb1,k1,2 „„„„„„„„„„2分. kbb1. ∴反比例函数解析式为y2x,一次函数解析式为yx1. „„„„„„„„„„1分.
23.证明:取AF的中点G,联结OGO、G分别是AC、AF的中点OG12FC,OG//FC...................2分正方形ABCDOABABOOCB45................1分AF平分BACABAFOAF22.5....................................1分DGEO67.5..................................................1分GO//FCAOGOCB45GOOGE67.5..................................................1分EGEOOGEGOOEBFCOE12FC.........................................................1分设甲车的速度为每小时x公里,依题意,得
720x6=180x+20,„„„„„„„„„„„„„„„„„„„„3分 整理,得x2
-21x+=0,„„„„„„„„„„„„„„„„„„„1分
24.解:
∴x1=18,x2=3, „„„„„„„„„„„„„„„„„„„„„„1分 经检验知,∴x1=18,x2=3都是所列方程的解,
但x2=3<16,不合题意舍去.所以只取x=18 .„„„„„„„„„1分 答:甲车的速度为每小时18公里. „„„„„„„„„„1分
25.(1)证明:∵CEAC,CFAE,∴AFEF „„„„„„„1分 ∵四边形ABCD是矩形, ∴ADBC,ABCBAD90
∴在RtABE中,BFAF „„„„„„„„„„„„„„„„„ 1分 ∴FBAFAB
∴FADFBC „„„„„„„„„„„„„„„„„„„„„ 1分 ∴FBC≌FAD „„„„„„„„„„„„„„„„„„„„„ 1分 (2)∵FBC≌FAD,FCFD,BFCAFD „„„„„„„ 1分 ∴BFDBFCCFDAFDCFD90 „„„„„„„ 1分 ∵四边形ABCD是矩形,∴BD=AC ∵
FB3,且BD=AC10, BD5FD8 „„„„„„„„„„„„„„„„„„„„„„„„„ 1分
FC8 „„„„„„„„„„„„„„„„„„„„„„„„„ 1分 26.(1)过点D作DH⊥BC,垂足为点H
由题意可知:AB=DH=8,AD=BH DC=10 ∴HC=DC2DH26 ∴AD=BH=BCCH ∵BC=18
∴AD=BH=12„„„„„„„„„„„„„1分 若四边形ABPQ是矩形,则AQ=BP ∵AQ=122t,BP=3t ∴122t3t
∴t12(秒)„„„„„„„„„„„„1分 5A Q D (2)由(1)得CH=6
再过点Q作QG⊥BC,垂足为点G
同理:PG=6 „„„„„„„„„„„„„1分 易知:QD=GH=2t 又BP+PG+GH+HC=BC ∴3t62t6k ∴tB P G H C k12 „„„„„„„„„„„„„1分 5AQD ∴k的取值范围为:k12cm„„„„„„1分 (3)假设存在时间t使PQ=10,有两种情况:
①如右图(中):由(2)可知:3t62t618 ∴tBP C6„„„„„„„„„„„„„„1分 5A
Q ②如右图(下):四边形PCDQ是平行四边形, ∴QD=PC=2t 又BP=3t,BP+PC=BC ∴3t2t18 ∴tBD
PC18(秒)„„„„„„„„„„„„1分 5
综上所述,存在时间t且t618秒或t秒时P、Q两点之间的距离为10cm 55
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务