a (a≠0 b≠0) ③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a (三)分数混合运算:同整数。 (四)分数除法应用题1、分数乘除法应用题的对比
3①已知单位“1”的量用乘法。例:甲是乙的,乙是25,求甲是多少?
5
6
即:甲=乙× —→ 25×=15
②未知单位“1”的量用除法(或方程)。例: 甲是乙的
35353,甲是15,求乙是多少? 5即:甲=乙× —→ 15÷=25 (建议列方程答) 2、分数应用题基本数量关系 (1)甲是乙的几分之几?
35353x=25 533甲=乙×几分之几 (例:甲是15的,求甲是多少?15×=9)
5533乙=甲÷几分之几 (例:9是乙的,求乙是多少?9÷=15)
553几分之几=甲÷乙 (例:9是15的几分之几?9÷15=)
5(2)甲比乙多(少)几分之几?
差15962(例:9比15少几分之几?(15-9)÷15===)
15乙155B.方法2:先求甲是乙的几分之几,再与1相比。
甲5152①多几分之几是:-1 (例: 15比9多几分之几?15÷9=-1=-1=)
339乙甲329②少几分之几是:1- (例:9比15少几分之几?1-9÷15=1-=1-=)
1555乙 (3)甲比乙多(少)几分之几,求乙是多少?
几乙=甲÷(1+ )
几322例:9比乙少,求乙是多少?9÷(1-)=9÷=15
555522例:15比乙多,求乙是多少?15÷(1+)=15÷=9
333◆画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。 (2)分析数量关系。 (3)找等量关系。 (4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
A.方法1:差÷乙=
第四单元 比
1、两个数相除又叫做两个数的比。在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。比的后项不能为0. 例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)
2、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。
7
3、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。 比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
4、比和除法、分数的联系与区别:(区别)除法是一种运算,分数是一个数,比表示两个数的关系。 比的前项相当与除法中的被除数,分数中的分子;比的后项相当与除法中的除数,分数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数值。
注意:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。 (二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。根据比的基本性质,把比化成最简整数比。 3.化简比: (2)用求比值的方法。
注意: 最后结果要写成比的形式。如: 15∶10 = 15÷10 = 3/2 = 3∶2 5.按比例分配:把一个数量按照一定的比来进行分配。 这种方法通常叫做按比例分配.
(一)比的意义:两个数的比表示两个数相除。
1、比式中,比号(∶)前面的数叫比的前项,比号后面的项叫做比的后项,比号相当于除号,比的前项除以后项的商叫做比值。
◆连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12 ∶ 20 =
前项
比号
123= 12÷20= =0.6 12∶20读作:12比20
520后项
比值
3、区分比和比值:
(1)比值是一个数,通常用分数表示,也可以是整数、小数。
(2)比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。 4、比和除法、分数的区别: 除法 分数 比 被除数 分子 前项 除号 分数线 比号 除数(不能为0) 分母(不能为0) 后项(不能为0) 商不变性质 基本性质 基本性质 是一种运算 是一个数 两个数的关系 (二)比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。 (三)化简比:化简之后结果还是一个比,不是一个数。
8
1、根据比的基本性质,可以把比化成最简单的整数比。 2、方法:
(1)整数比:用比的前项和后项同时除以它们的最大公约数。
(2)分数比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。 (3)小数比:向右移动小数点的位置,把小数比先化成整数比,再化简。 ◆也可以先求出比的比值,再将结果写成比的形式。
(四)按比例分配:把一个量按一定的比分配的方法叫做按比例分配。 例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少? 方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35
53 方法二:甲:56×=21 乙:56×=35
3535例如:已知甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35 53 方法二:甲乙的和21÷=56 乙:56×=35
3535333 方法三:甲÷乙= 乙=甲÷=21÷=35
555
第五单元 圆
1、圆心:圆中心一点叫做圆心。用字母“O”来表示。
半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。 直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。 2.圆心确定圆的位置,半径确定圆的大小。
3.在同一个圆内,所有的半径都相等,所有的直径都相等。在同一个圆内,有无数条半径,有无数条直径。在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:1
d=2r r =2 d
4.圆的周长:围成圆的曲线的长度叫做圆的周长。
5.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。 6.圆的周长公式:C=d 或C=2r
7、圆的面积:圆所占平面的大小叫圆的面积。
8.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积= r×r=r² 9.圆的面积公式:S=r² 或者S=(d2)² 或者S=(C 2)²
9
10.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。圆的面积和正方形面积的比是
:4。
在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2 。
11.在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。
12.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=R²-r² 或 S=(R²-r²)。
(其中R=r+环的宽度.)
13.环形的周长=外圆周长+内圆周长 14.半圆的周长等于圆的周长的一半加直径。
半圆周长公式:C=d2+d 或C=r+2r
2 15.半圆面积=圆面积2 公式为:S=r²
46.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。 17.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。
18.当一个圆的半径增加a厘米时,它的周长就增加2a厘米;
当一个圆的直径增加a厘米时,它的周长就增加a厘米。
19.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.
20.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小; 当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小。
nn2r 或 d36036021.扇形弧长公式:L=
n 扇形的面积公式: S=360r² (n为扇形的圆心角度数,r为扇形所在圆的半径)
22.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
23.有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
有2条对称轴的图形是:长方形
10
有3条对称轴的图形是:等边三角形 有4条对称轴的图形是:正方形 有无数条对称轴的图形是:圆、圆环。 24.直径所在的直线是圆的对称轴。 25、倍表
1π 3.14 1134.52165.962π 113.0162803.84 π 4 π 4 4 π 2π 6.28 1237.62269.072π 153.8172907.46 π 8 π 8 6 π 3π 9.42 1340.82372.282π 200.91821017.3π 2 π 2 6 π 6 4π 12.51443.92475.392π 2.31921133.56 π 6 π 6 4 π 4 5π 15.7 17.1 2578.5 102314 π π π 2021256 π 6π 18.81650.22681.6112379.92121384.74 π 4 π 4 π 4 π 4 7π 21.91753.32784.7122452.12221519.78 π 8 π 8 π 6 π 6 8π 25.11856.52887.9132530.62321661.02 π 2 π 2 π 6 π 6 9π 28.21959.62991.0142615.42421808.66 π 6 π 6 π 4 π 4 1031.4 2062.8 3094.2 152706.5 2521962.5 π π π π π
(一)圆的认识
1、定义:圆是平面内封闭曲线围成的平面图形。 2、相关概念:
(1)圆心O:圆中心的点叫做圆心。圆心一般用字母O表示。圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
(2)半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
(3)直径d: 通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相
11
等。直径是圆内最长的线段。
1d ◆同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2=d=
22(4)等圆:半径相等的圆叫做等圆,等圆通过平移可以完全重合。 (5)同心圆:圆心重合、半径不等的两个圆叫做同心圆。
3、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
◆有1条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角 有2条对称轴的图形:长方形 有3条对称轴的图形:等边三角形 有4条对称轴的图形:正方形 有无数条对称轴的图形:圆,圆环 4、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
(二)圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
周长 即:圆周率π==周长÷直径≈3.14
直径所以,圆的周长(c)=直径(d)×圆周率(π) ——周长公式: C=πd 或 C=2πr ◆圆周率π是一个无限不循环小数,3.14是近似值,π>3.14。
3、周长的变化的规律:半径扩大多少倍,直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。 如果r1∶r2∶r3=d1∶d2∶d3=C1∶C2∶C3
14、半圆周长=圆周长一半+直径=×2πr = πr+d
2(三)圆的面积
1、圆面积公式的推导
把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。 ◆圆与拼成的长方形有如下关系:
圆的半径=长方形的宽 圆的周长的一半=长方形的长 长方形面积=长 ×宽
圆的面积=圆的周长的一半(πr)×圆的半径(r)
1S圆=πd× r S圆=πr×r =πr2
22、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,蒙古包、篮子、盘子等做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍;圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
如果: r1∶r2∶r3=d1∶d2∶d3=C1∶C2∶C3=2∶3∶4
则:S1∶S2∶S3=4∶9∶16
4、环形面积 = 大圆面积-小圆面积=πr大2 -πr小2=π(R大2 - r小2) (四)扇形
1、定义:圆上任意两点(如点A、B)之间的部分叫做弧(读作弧AB),一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
2、圆心角:顶点在圆心的角叫做圆心角。(在同一圆内,扇形的大小与圆心角的大小有关)
12
n(n表示扇形圆心角的度数) 36011 特殊扇形的面积(90︒、180︒):S=πr2 S=πr2
423、扇形面积 = πr2×
(五)圆周长与圆面积的实际应用
1、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
2、任意一个正方形的内切圆的直径是正方形的边长,它们的面积比是4∶π即4∶3.14。 3、外方内圆的间隙面积=正方形的面积-圆的面积 S=0.86 r2
外圆内方的间隙面积=圆的面积-正方形的面积 S=1.14 r2
4、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
6π=18.84 7π=21.98 8π=25.12 9π=28.26
12π=3.14 22π=12.56 32π=28.26 42π=50.24 52π=78.5 62π=113.04 72π=153.86 82π=200.96 92π=2.34
第六单元 百分数
1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。 例如:25%的意义:表示一个数是另一个数的25%。
2.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。 3.小数与百分数互化的规则:
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;(加向右) 把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。(去向左) 4.百分数与分数互化的规则:
把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数; 把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 5、常用的分数、小数及百分数的互化 11
2 =0.5=50% 4 =0.25=25% 31
4 =0.75=75% 5 =0.2=20% 23 =0.4=40% 55 =0.6=60% 41 =0.8=80% 58 =0.125=12.5% 35 =0.375=37.5% 88 =0.625=62.5%
13
71 =0.875=87.5% 810 =0.1=10% 11 =0.0625=6.25% 1620 =0.05=5% 11
25 =0.04=4% 40 =0.025=2.5% 11 =0.02=2% 50100 =0.01=1%
6.百分率公式:求百分率就是求一个数是另一个数的百分之几。(算式要加×100%,包括浓度、利润率)
发芽率发芽种子数面粉的重量100% 出粉率100%
试验种子总数小麦的重量合格产品数实际出勤人数100% 出勤率100%
产品总数总人数盐的重量油的重量100% 100% 含盐率盐水的重量花生仁油菜子的重量合格率出油率含糖率=糖的重量及格的人数100% 及格率100%
糖水的重量参加考试的总人数命中的数量活了的棵数100% 成活率100%
打的总数量栽的总棵数正确的题数大米的重量100% 出米率100%
做题的总数稻谷的重量命中率正确率7. 求一个数比另一个数多(或少)百分之几(另一个数是单位“1”)
实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几 (甲-乙)÷乙 求乙比甲少百分之几 (甲-乙)÷甲 8.求一个数的百分之几是多少
一个数(单位“1”) ×百分率
9. 已知一个数的百分之几是多少,求这个数 ? 部分量÷百分率=一个数(单位“1”) 10、浓度问题
溶质(盐)的重量+溶剂(水)的重量=溶液(盐水)的重量 溶质(盐)的重量÷溶液(盐水)的重量×100%=浓度
14
溶液(盐水)的重量×浓度=溶质(盐)的重量 溶质(盐)的重量÷浓度=溶液(盐水)的重量 最常用的是用方程解浓度问题
比如两种不同浓度的溶液混合,最常用的数量关系是 甲溶液质量×甲的浓度+乙溶液质量×乙的浓度 =总溶液质量×总的浓度
(一)百分数的意义:表示一个数是另一个数的百分之几。
◆百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。
百分数的分子可以是小数,分数的分子只以是整数。
◆百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。 (2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。 (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。 (5)小数化分数:把小数成分母是10、100、1000等的分数再化简。 (6)分数化小数:分子除以分母。 (二)百分数应用题
1、求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
◆由于求率的特殊要求,不要忘记在算式后面“×100%”
2、 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
◆方法同求一个数比另一个数多(少)几分之几,只不过结果用百分数表示而已。 求甲比乙多百分之几 (甲-乙)÷乙
相差数÷单位“1”
求乙比甲少百分之几 (甲-乙)÷甲
3、 求一个数的百分之几是多少 一个数(单位“1”) ×百分率 4、 已知一个数的百分之几是多少,求这个数 对应量÷百分率=一个数(单位“1”) 5、百分数应用题型分类
(1)一个数是另一个数的百分之几
①甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125% ②甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80% ③乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50 ④甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40 ⑤乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50 ⑥甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40 (2)一个数比另一个数多(少)百分之几
15
①甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40=25% ②甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50=20% ③甲比乙多25%,多10,乙是多少?10÷25%=40 ④甲比乙多25%,多10,甲是多少?10÷25%+10=50 ⑤乙比甲少20%,少10,甲是多少?10÷20%=50 ⑥乙比甲少20%,少10,乙是多少?10÷20%-10=40 (3)比一个数多(少)百分之几的数
①乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50 ②甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40 ③乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50 ④甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40
第七单元 统计
扇形统计图的特点:可以清楚直观地反映各部份数量同总量之间的关系。
折线统计图的特点:不但能够看出数量的多少,还可以反映出数量增减变化的情况。 条形统计图的特点:能够清楚的看出数量的多少。 第八单元 : 数学广角
1、 要看到图形,借助数看图形! 2、要看到数,借助图形看数! 3、把数学画出来! 4、 把事物量出来!
16