1.课程设计任务书……………………………………………………………3 2.说明书的正文………………………………………………………………4
2.1步进电机概述……………………………………………………………4 2.2步进电机工作原理简要说明……………………………………………4 2.3驱动器介绍………………………………………………………………5 2.4重要参数概念……………………………………………………………9 2.5应用实例…………………………………………………………………10 2.6步进电机的选用与参数的选择…………………………………………10
3.心得体会……………………………………………………………………14 4.参考文献……………………………………………………………………15
1
一.课程设计任务书
1.1任务要求
(1)结合某个实例对步进电机系统进行计算选型,选型应结合某个公司的典型
产品进行(如北京斯达特、北京和利时或常州宝马)。
(2)结合一应用实例阐述步进电机系统在某领域的应用,可以是别人的产品或
例子,但是自己要介绍清楚该系统如何工作,其控制方式是什么、信号如何处理等。
(3)选型和应用实例的型号要对应起来; 1.2
主要完成任务
(1)查找相关资料,确定课程设计方案; (2)找到步进电机的相关参数及型号; (3)对参数进行计算;
(4)找到实例并了解其应用领域; 1.3
成果提交
(1)课程设计说明书一本。(电子文档和打印稿各一份) 要求:内容完整,图表完备,条理清晰,分析有据,计算精确。所附电路图布局合理,清晰完备,图形和符号要规范。
(2)用其参数反推步进电机的型号;
1.4时间安排
11月10在南307
2
二、说明文正文
2.1步进电机概述
步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器
虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。
步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(即步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
2.2步进电机工作原理简要说明
步进电动机的工作原理
图1 三相反应式步进电动机的结构示意图
3
1——定子 2——转子 3——定子绕组
图1是最常见的三相反应式步进电动机的剖面示意图。电机的定子上有六个均布的磁极,其夹角是60º。各磁极上套有线圈,按图1连成A、B、C三相绕组。转子上均布40个小齿。所以每个齿的齿距为θE=360º/40=9º,而定子每个磁极的极弧上也有5个小齿,且定子和转子的齿距和齿宽均相同。由于定子和转子的小齿数目分别是30和40,其比值是一分数,这就产生了所谓的齿错位的情况。若以A相磁极小齿和转子的小齿对齐,如图1,那么B相和C相磁极的齿就会分别和转子齿相错三分之一的齿距,即3º。因此,B、C极下的磁阻比A磁极下的磁阻大。若给B相通电,B相绕组产生定子磁场,其磁力线穿越B相磁极,并力图按磁阻最小的路径闭合,这就使转子受到反应转矩(磁阻转矩)的作用而转动,直到B磁极上的齿与转子齿对齐,恰好转子转过3º;此时A、C磁极下的齿又分别与转子齿错开三分之一齿距。接着停止对B相绕组通电,而改为C相绕组通电,同理受反应转矩的作用,转子按顺时针方向再转过3º。依次类推,当三相绕组按A→B→C→A顺序循环通电时,转子会按顺时针方向,以每个通电脉冲转动3º的规律步进式转动起来。若改变通电顺序,按A→C→B→A顺序循环通电,则转子就按逆时针方向以每个通电脉冲转动3º的规律转动。因为每一瞬间只有一相绕组通电,并且按三种通电状态循环通电,故称为单三拍运行方式。单三拍运行时的步矩角θb为30º。三相步进电动机还有两种通电方式,它们分别是双三拍运行,即按AB→BC→CA→AB顺序循环通电的方式,以及单、双六拍运行,即按A→AB→B→BC→C→CA→A顺序循环通电的方式。六拍运行时的步矩角将减小一半。反应式步进电动机的步距角可按下式计算:
θb=360º/NEr
式中 Er——转子齿数;
N——运行拍数,N=km,m为步进电动机的绕组相数,k=1或2。
2.3驱动器介绍
步进电动机不能直接接到工频交流或直流电源上工作,而必须使用专用的步
进电动机驱动器,如图2所示,它由脉冲发生控制单元、功率驱动单元、保护单元等组成。图中点划线所包围的二个单元可以用微机控制来实现。驱动单元与步进电动机直接耦合,也可理解成步进电动机微机控制器的功率接口,这里予以简
4
单介绍。
图2 步进电动机驱动控制器
1. 单电压功率驱动接口
实用电路如图3所示。在电机绕组回路中串有电阻Rs,使电机回路时间常数减小,高频时电机能产生较大的电磁转矩,还能缓解电机的低频共振现象,但它引起附加的损耗。一般情况下,简单单电压驱动线路中,Rs是不可缺少的。Rs对步进电动机单步响应的改善如图3(b)。
图3 单电压功率驱动接口及单步响应曲线
图4 双电压功率驱动接口
2.双电压功率驱动接口
双电压驱动的功率接口如图4所示。双电压驱动的基本思路是在较低(低频段)用较低的电压UL驱动,而在高速(高频段)时用较高的电压UH驱动。这种
5
功率接口需要两个控制信号,Uh为高压有效控制信号,U为脉冲调宽驱动控制信号。图中,功率管TH和二极管DL构成电源转换电路。当Uh低电平,TH关断,DL正偏置,低电压UL对绕组供电。反之Uh高电平,TH导通,DL反偏,高电压UH对绕组供电。这种电路可使电机在高频段也有较大出力,而静止锁定时功耗减小。
3.高低压功率驱动接口
图5 高低压功率驱动接口
高低压功率驱动接口如图5所示。高低压驱动的设计思想是,不论电机工作频率如何,均利用高电压UH供电来提高导通相绕组的电流前沿,而在前沿过后,用低电压UL来维持绕组的电流。这一作用同样改善了驱动器的高频性能,而且不必再串联电阻Rs,消除了附加损耗。高低压驱动功率接口也有两个输入控制信号Uh和Ul,它们应保持同步,且前沿在同一时刻跳变,如图5所示。图中,高压管VTH的导通时间tl不能太大,也不能太小,太大时,电机电流过载;太小时,动态性能改善不明显。一般可取1-3ms。(当这个数值与电机的电气时间常数相当时比较合适)。 4.斩波恒流功率驱动接口
恒流驱动的设计思想是,设法使导通相绕组的电流不论在锁定、低频、高频工作时均保持固定数值。使电机具有恒转矩输出特性。这是目前使用较多、效果较好的一种功率接口。图6是斩波恒流功率接口原理图。图中R是一个用于电流采样的小阻值电阻,称为采样电阻。当电流不大时,VT1和VT2同时受控于走步脉冲,当电流超过恒流给定的数值,VT2,电源U被切除。由于电机绕组具有较大电感,此时靠二极管VD续流,维持绕组电流,电机靠消耗电感中的磁
6
场能量产生出力。此时电流将按指数曲线衰减,同样电流采样值将减小。当电流小于恒流给定的数值,VT2导通,电源再次接通。如此反复,电机绕组电流就稳定在由给定电平所决定的数值上,形成小小的锯齿波,如图6所示。
图6 斩波恒流功率驱动接口
斩波恒流功率驱动接口也有两个输入控制信号,其中u1是数字脉冲,u2是模拟信号。这种功率接口的特点是:高频响应大大提高,接近恒转矩输出特性,共振现象消除,但线路较复杂。目前已有相应的集成功率模块可供采用。 5.升频升压功率驱动接口
为了进一步提高驱动系统的高频响应,可采用升频升压功率驱动接口。这种接口对绕组提供的电压与电机的运行频率成线性关系。它的主回路实际上是一个开关稳压电源,利用频率-电压变换器,将驱动脉冲的频率转换成直流电平,并用此电平去控制开关稳压电源的输入,这就构成了具有频率反馈的功率驱动接口。
6.集成功率驱动接口
目前已有多种用于小功率步进电动机的集成功率驱动接口电路可供选用。 L298芯片是一种H桥式驱动器,它设计成接受标准TTL逻辑电平信号,可用来驱动电感性负载。H桥可承受46V电压,相电流高达2.5A。L298(或XQ298,SGS298)的逻辑电路使用5V电源,功放级使用5~46V电压,下桥发射极均单独引出,以便接入电流取样电阻。L298(等)采用15脚双列直插小瓦数式封装,工业品等级。它的内部结构如图7所示。H桥驱动的主要特点是能够对电机绕组进行正、反两个方向通电。L298特别适用于对二相或四相步进电动机的驱动。{{分页}}
7
图7 L298原理框图
与L298类似的电路还有TER公司的3717,它是单H桥电路。SGS公司的SG3635则是单桥臂电路,IR公司的IR2130则是三相桥电路,Allegro公司则有A2916、A3953等小功率驱动模块。
2.4重要参数概念
电机固有步距角
它表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角的值,如86BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°、整步工作时为1.8°),这个步距角可以称之为‘电机固有步距角’,它不一定是电机实际工作时的真正步距角,真正的步距角和驱动器有关。 通常步进电机步距角β的一般计算按下式计算:β=360°/(Z·m·K) 式中 β―步进电机的步距角;Z―转子齿数;m―步进电动机的相数;K―控制系数,是拍数与相数的比例系数。
步进电机的相数
是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机。电机相数不同,其步距角也不同,一般二相电机的步距角为0.9°/1.8°、三相的为0.75°/1.5°、五相的为0.36°/0.72° 。在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己步距角的要求。如果使用细分驱动器,则‘相数’将变得没有意义,用户只需在驱动器上改变细分数,就可以改变步距角。
保持转矩
8
是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m的步进电机。
2.5应用实例
粉剂包装机 光盘选取机 自体血液回收机
粉剂包装机:步进电机控制打料螺杆灌装精度准确,该机用于包装袋装的粉状类,计量系统为步进电机控制。如:农药、化肥、兽药、饲料、面膜粉、奶粉、调味品等。螺杆灌装适用于流动性不好的物料,具有快速、准确、经济、实用的优点。 光盘选取机:电脑控制程序,即时显示光盘存储库的工作状态,应用于图书馆光盘管理及一些档案管理等
自体血液回收机:轴数:3 应用:血液泵 电机:57驱动:20806N 控制:单片机。
2.6步进电机选型的计算示例
9
下面给出的是一个3相步进电机必要脉冲数和驱动脉冲速度的计算示例。这是一个实际应用例子,可以更好的理解电机选型的计算方法。 2.6.1 驱动滚轴丝杆
如下图,3相步进电机(1.2°/步)驱动物体运动1秒钟,则必要脉冲数和驱动脉冲速度的计算方法如下:
必要脉冲数=
100360×=3000[脉冲] 101.2 10
如果采用自启动方式驱动1秒钟,则驱动脉冲速度应该这样计算: 3000[Pulse]/1[sec]=3[kHz]
但是,自启动速度不可能是5kHz,应该采用加/减速运行方式来驱动。如果加/减速时间设置为定位时间的25%,启动脉冲速度为500[Hz],则计算方法如下:
驱动脉冲速度[Hz]=
如图所示:
3000[脉冲]—500[Hz]0.25[秒]=3.8[kHZ]
1[秒]—0.25[秒]
2.6.2驱动传动带
如下图,3相步进电机(1.2°/步)驱动物体运动1秒钟。驱动轮的周长即旋转一圈移动的距离大约为50[mm]。 因此,所需要的必要脉冲数为:
必要脉冲数=
3601100×=6600[脉冲] 1.250
所需参数同上例驱动滚轴丝杆,采用加/减速运行模式,则驱动脉冲速度为:
11
驱动脉冲速度[Hz]=
如图所示:
6600[脉冲]-500[Hz]0.25[秒]=8.7 [kHz]
1[秒]-0.25[秒]
负载力矩的计算示例(TL)
下面给出的是一个3相步进电机负载力矩的计算示例。这是一个实际应用例子,其中的数字公式有助于更好的理解电机选型的应用。 2.6.3 滚轴丝杆驱动水平负载
如下图,滚轴丝杆驱动水平负载,效率为90%,负载重量为40千克,则负载力矩的计算方法如下:
TL=
TL=
mPB1×[kgf·cm] i2π40[kg]1[cm]1×=7.07 [kgf·cm]
2π0.9i
2.6.4 传送带驱动水平负载
传送带驱动水平负载,效率为90%,驱动轮直径16毫米,负载重量是9千克,则负载力矩的计算方法如下:
12
TL=
D11×m××[kgf·cm] 2i1.6[cm]11×9[kg]××=8 [kgf·cm] 20.912.6.5滚轴丝杆和减速器驱动水平负载
如下图,滚轴丝杆螺距为5毫米,效率为90%,负载重量为250千克,则负载力矩的计算方法如下:
TL=
TL=
mPB1×[kgf·cm] i2π250[kg]0.5[cm]1×=2.21 [kgf·cm]
2π0.910这是水平方向负载的计算结果,如果是垂直方向的负载,则力矩应该是此结果的2倍,而且此结果仅包括负载力矩,电机的总负载还应该包括加/减速力矩,但是,计算中很难得到准确的负载惯性惯量,因此,为了解决这个问题,在实际计算负载力矩的时候,特别是自启动或需要迅速加/减速的情况,我们应该在此基础上再乘以一个安全系数。
三.心得体会
回顾起此次步进机课程设计,至今我仍感慨颇多。经过这次课堂设计的学习,使我们了解步进电机的工作原理以及其应用的主要领域。其次,我们更加清晰的认识到步进电机相对于伺服电机的优缺点,最重要的是知道了步进电机是怎样控制系统或装置。
的确,在整整两星期的日子里,可以说得是苦多于甜,但是可以学到很多很
13
多的的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和思考的能力。在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,比如步进电机计算选型,怎样掌握步进电机的工作电压,如何控制三相绕组通电的次序……通过这次课程设计之后,一定把以前所学过的知识重新温故。
四.参考文献
http://wenku.baidu.com/view/7a93af21482fb4daa58d4bce.html http://wenku.baidu.com/view/79fc710690c69ec3d5bb70.html
百度百科 http://baike.baidu.com/view/13608.htm
《机电一体化系统设计》(第三版) 张建明 等编著
《步进电机在汽车制动元件测试系统中的应用》作者 刘丽峰,马朝,永白果 北京工业大学 文章编号:1001—3997(2008)08—0127-02
《步进电机的选型与计算》作者 范超毅.范巍 江汉大学机电工程学院,武汉430056 文章编号:1001—3881(2008)5—310—4
《普通车床数控化改造中步进电机的计算选型》王玉萍 河南科技学院 河南453003 摘自期刊《电工技术》2004年9期
14
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务