您好,欢迎来到年旅网。
搜索
您的当前位置:首页金属偶联反应

金属偶联反应

来源:年旅网
Chem.Rev.2010,110,1435–14621435

Cobalt-CatalyzedCross-CouplingReactions

Ge´rardCahiez*andAlbanMoyeux

DepartmentofChemistry(FRE3043),CNRS-Universite´deParis13,74RueMarcelCachin,F-93017Bobigny,France

ReceivedFebruary28,2009

Contents

1.Introduction

2.HomocouplingReactions

3.Csp2-Csp2Cross-couplingReactions3.1.Alkenylation

3.1.1.FromAromaticOrganomagnesium

Reagents

3.1.2.FromVinylicGrignardReagents

3.1.3.FromArylHalidesandAlkenylAcetates3.2.Aryl-ArylCross-coupling

3.2.1.FromAromaticOrganometallicReagents3.2.2.FromTwoAromaticHalides4.Csp2-Csp3Cross-couplingReactions4.1.Alkenylation

4.1.1.FromAliphaticOrganometallicReagents4.1.2.FromAliphaticHalides4.2.Arylation

4.2.1.FromAliphaticHalides4.2.2.FromAromaticHalides

4.3.AllylationofAromaticOrganometallics5.Alkynylation

5.1.PioneeringWorks

5.2.BenzylationofAcetylenicGrignardReagents5.3.AlkylationofAcetylenicGrignardReagents5.4.AlkenylationofAcetylenicGrignardReagents6.Csp3-Csp3Cross-coupling6.1.Allylation

6.1.1.AllylationofAliphaticOrganozinc

Compounds

6.1.2.AlkylationofAllylicGrignardReagents6.1.3.AllylationofTrimethylsilylmethylmagnesium

Chloride

6.1.4.AllylationofAllylicGrignardReagents6.2.Benzylation6.3.Alkylation7.Acylation

7.1.FromOrganometallicCompounds

7.2.Cobalt-MediatedAcylationofArylBromides8.ReductiveCyclizationandHeck-TypeReactions8.1.RadicalCyclization

8.1.1.IntramolecularRadicalCyclization

8.1.2.CyclizationviaanIntermolecularRadical

Addition

8.2.Cobalt-CatalyzedHeck-TypeReactions9.MiscellaneousReactions

9.1.Cobalt-MediatedMichaelAddition

*E-mail:gerard.cahiez@univ-paris13.fr.

14351435143614361436143714381438143814401440144014401442144214421445144614461446144614471447144814481448144814491449144914501451145114511451145114511453145314551455

9.2.Allylationof1,3-DicarbonylCompounds9.3.ActivationofC-HBonds:C-NCoupling

Reactions

9.4.Three-ComponentReactions

9.4.1.Synthesisof󰀁-AcetamidoKetones9.4.2.SynthesisofHomoallylsilanes9.5.CouplingofAlkenesandAlkynes9.6.VariousReactions10.Conclusion

11.Acknowledgments12.References

1455145614561456145714571458145914601460

1.Introduction

SincethepioneeringworkofKharasch1onthemetal-catalyzedhomocouplingreactionofaromaticGrignardreagents(see2)inthemiddleofthe20thcentury,cobalt-catalyzedcarbon-carbonbond-formingreactionshavere-ceivedparticularattention.2Thescopeofthesereactionsisdifferentfromthatofthepalladium-andnickel-mediatedprocedures.Thus,cobalt-catalyzedcross-couplingreactionsareveryefficientfortheelaborationofCsp2-Csp2bonds(seesection2),buttheyareespeciallyinterestingforcouplingsinvolvingalkylhalides,sincethedecompositionby󰀁-hy-drogeneliminationofalkyl-cobaltintermediatesisnotalimitationasinthecaseofpalladiumornickelcatalyzedreactions(seesections3,4,and5).Cobalt-mediatedacyla-tions,radicalcyclizations,andHeck-typereactionshavealsobeendescribed(seesections6and7).Allthesereactionswillbediscussedhereafter.

ItisworthyofnotethatcobaltsaltshavealsobeenextensivelyusedascatalystsforPauson-Khand3andhydro-formylation4reactionsbutalsoforthecyclopropanation5ofolefinsandfor[2+2+2]6and[2+2]7cycloadditionreactions.Thesereactionswillnotbediscussedherein.

2.HomocouplingReactions

Thefirstreportsoncobalt-catalyzedcross-couplingreac-tionsdescribethehomocouplingreactionofGrignardreagents.In1939,GilmanandLichtenwalter8obtainednearlyquantitativeyieldsofhomocouplingproductbytreatingaromaticGrignardreagentswithastoichiometricamountofcobaltchloride.In1941,Kharasch1discoveredthatgoodyieldsofhomocouplingproductsareobtainedbyusingonlycatalyticamounts(i.e.,3mol%)ofcobaltchlorideandastoichiometricamountofanoxidantsuchasaromaticoraliphatichalides(Scheme1).TheroleofthislatteristooxidizetheCobalt(0)speciesintoacobalt(II)speciesafterthereductiveeliminationstep.

Twentyyearslater,in1962,MorizurappliedtheKharaschreactiontothesynthesisofvariousbiaryls.9aTheyieldsare

10.1021/cr90007862010AmericanChemicalSociety

PublishedonWeb02/11/2010

1436ChemicalReviews,2010,Vol.110,No.3

Ge´rardCahiezreceivedhisPh.D.in1973,attheUniversityPierre&MarieCurie(ParisVI),underthesupervisionofProfessorJeanFranc¸oisNormant,onthecarbocuprationofterminalalkynes(vinylcopperreagents).Then,hejoinedtheCNRS.AfterapostdoctoralyearintheRousselUclafLaboratories(nowSanofiAventis)onthechemistryofsteroid,hecamebacktotheUniversityPierreandMarieCurie,andin1980,hebecameDirectorofResearchattheCNRS.Then,hemovedtotheEcoleSupe´rieuredeChimieOrganiqueetMine´rale(ESCOM,Cergy-Pontoise)in1993.From1993to2008hewasDirectorofResearchattheCNRSandProfessorofChemistryatESCOM.From2000to2009,hewasalsoDirectoroftheUMR8123,ajointresearchunitCNRS-UniversityofCergyPontoise-ESCOM.In2009,hemovedtotheUniversityofParis13,asDirectorofResearchattheCNRS,tocreateanewresearchgroupinorganometallicchemistry.Theresearchdevelopedsince1973dealtwiththeuseoforganometallicreagentsinorganicsynthesisandespeciallywiththedevelopmentofthechemistryoforganomanganesereagents.Hiscurrentinterestisalwaysfocusedonorganomanganesechemistrybutmoregenerallyonthesearchfornewhighlyselectiveorganometallicreactions,i.e.,Mn-,Co-,andFe-catalyzedcross-couplingreactions,involvingnotoxicandexpensivemetaloradditive.

AlbanMoyeuxwasborninLaBasse´e(France)in1982.HeobtainedhisB.Sc.DegreefromtheUniversityofLensin2004.HeobtainedhisM.Sc.DegreefromtheUniversityofCergy-Pontoisein2005.Hethenworkedoniron-andcobalt-catalyzedcross-couplingreactionsunderthesupervi-sionofProfessorGe´rardCahiezandwasawardedhisPh.D.DegreeinNovember2008.HefinallyjoinedthegroupofProfessorAloisFu¨rstnerasapostdoctoralfellowattheMax-PlanckInstituteofMu¨lheim(Germany),whereheiscurrentlyworkingontotalsynthesis.

significantlylowerthanthosepreviouslyreportedbyKhara-sch.Almostidenticalresultswereobtainedbyusingbutylbromide(Scheme2)orbromobenzene(Table1)asanoxidant.

Itshouldbeunderlinedthataryllithiumandarylmagnesiumcompoundsgivesimilaryields9b(Table1).

Interestingly,benzylicorhomobenzylicGrignardreagentscanalsobeused(Table1,entries6-10).

CahiezandMoyeux

Scheme1.TheKharaschReaction

Scheme2.Cobalt-CatalyzedHomocouplingReactionofAromaticGrignardReagents

3.Csp2-Csp2Cross-couplingReactions3.1.Alkenylation

3.1.1.FromAromaticOrganomagnesiumReagents

In1943,Kharaschdescribedthefirstcobalt-catalyzedalkenylationofaromaticGrignardreagents10(Table2).Theveryreactivevinylor1-propenylhalidesgivemoder-ateyields(Table2,entries1-3)whereasstericallyhinderedormoresubstitutedalkenylhalidesonlyaffordverypoorresults.LargeamountsofhomocouplingproductsarethenobtainedfrombothalkenylhalideandarylGrignardreagent(Table2,entries4-6).Thesyntheticinterestofthisreactionislimited,since,eveninthebestcases,2equivofalkenylhalidesareused.

In1982,Uemurareportedthecross-couplingreactionbetweenarylGrignardreagentsandalkenyltelluridesundercobaltcatalysis11(Scheme3).

Yieldsarequantitative,butalargeexcessofGrignardreagentisused(2.5equiv).Itshouldbeunderlinedthatasubstantialamountofhomocouplingproduct(biaryl)isformedasasideproduct.Thisisacleardrawback,sincethepurificationofthefinalproductisoftentricky.

In1998,Cahiezreinvestigatedthecobalt-catalyzedalk-enylationofaromaticGrignardreagents.12Aclearimprove-mentwasobservedbyusingaTHF/NMPmixtureasasolvent(Table3).Thus,variousalkenylhalideshavebeencoupledstereospecificallyingoodtoexcellentyields(Table3,entries1-5).

Veryrecently,Hayashi13describedthecobalt-catalyzedcouplingbetweenalkenyltriflatesandarylGrignardreagents.

Cobalt-CatalyzedCross-CouplingReactions

Table1.Cobalt-CatalyzedHomocouplingReactionofAryllithiumandArylmagnesiumHalides

Table2.Cobalt-CatalyzedAlkenylationofAromaticGrignardReagents

Thecouplingtakesplaceundermildconditions(Scheme4).ThepresenceofNMPisnotnecessary,butPPh3isusedasaligand.

Thismethodcanbecomplementarytotheprecedentmethodusingalkenylbromides,sincevinyltriflatescanbeeasilypreparedfromthecorrespondingketones.

ChemicalReviews,2010,Vol.110,No.31437

Scheme3.Cross-couplingbetweenAlkenylTelluridesandAromaticGrignardReagents

Table3.Cobalt-CatalyzedAlkenylationofAromaticGrignardReagentsinthePresenceofNMP

Scheme4.Cobalt-CatalyzedCross-couplingbetweenAlkenylTriflatesandAromaticGrignardReagents

3.1.2.FromVinylicGrignardReagents

Untilnow,therehaveonlybeenveryfewcobalt-catalyzedalkenyl-alkenylcross-couplingreactions.In1998,Cahiez12describedoneexampleofcobalt-catalyzedcross-couplingbetweenanalkenylhalideandanalkenylGrignardreagent(Scheme5)inmoderateyield.Thereactionisstereospecificandgivesonlythepuretrans-diene.

Recently,Hayashi13describedthecobalt-catalyzedcross-couplingbetweenalkenyltriflatesandalkenylGrignardreagents.GoodyieldsareobtainedfromR-monosubstituted

1438ChemicalReviews,2010,Vol.110,No.3

Scheme5.Cobalt-CatalyzedCouplingbetween

StyrylmagnesiumBromideand2-Methyl-1-bromopropane

Scheme6.Cobalt-CatalyzedCouplingbetweenAlkenylmagnesiumHalidesandAlkenylTriflates

Table4.Cobalt-CatalyzedCouplingbetweenFunctionalizedArylHalidesandAlkenylAcetates

orR,󰀁-and󰀁,󰀁-disubstitutedalkenylGrignardreagents(Scheme6).

3.1.3.FromArylHalidesandAlkenylAcetates

In2005,Pe´richonreportedthecobalt-catalyzedcouplingbetweenfunctionalizedarylhalidesandalkenylacetates.Itistheonlyexampleofacobalt-catalyzedarylationofenolesters.Thereactionisperformedbyusingacatalyticamountofcobaltbromide(5%)inthepresenceof10equivofmanganese(Table4).14

Moderatetogoodyieldsareobtained.Asarule,arylchloridesorbromidesgivesimilarresults(Table4,entries

CahiezandMoyeux

Scheme7.Cross-couplingbetweenChloropyridinesandIsopropenylAcetate

Scheme8.MechanismProposalfortheCobalt-CatalyzedAlkenylationofArylHalidesbyVinylAcetates

1-6).However,insomecases,arylchloridesleadtobetteryields(2-and4-halobenzonitriles,entries7-8and13-14).Aryliodidessuchas4-iodoanisoleandethyl4-iodoben-zoatearenotsuitablesubstrates,sincetheyleadessentiallytoamixtureofreducedandhomocouplingproducts.

Thereactionwasextendedtohalopyridines(Scheme7).Amechanisticpathwaywasproposed(Scheme8).Inthefirststep,CoIIisreducedbymanganesepowderinthepresenceofpyridineeitherinCoIorinCo0.Inaprecedentwork,Pe´richondemonstratedthatCoIisstabilizedbyvinylicacetateinanacetonitrile/pyridinemixture.15Thelow-valentcobaltspeciesformedisprobablycoordinatedbythevinylacetate.Itthenundergoesanoxidativeadditionofthearylhalidetogivean“arylcobalt”species.Thisspeciescouldthenreactwithvinylicacetateaccordingtoasix-memberedtransitionstate[A].Afterreductiveelimination,cobaltisreducedbytheexcessofMn0toregeneratetheactivecobaltspecies.

3.2.Aryl-ArylCross-coupling

3.2.1.FromAromaticOrganometallicReagents

In1983,Uemuradescribedthecross-couplingbetweendiaryltellurides(Ar2Te)andaromaticorganomagnesiumreagentsinthepresenceofcobaltsalts11(Scheme9).

Thereactionaffordspooryields,andasubstantialamountofhomocouplingproductaccruingfromtheGrignardreagentisproduced.Thepurificationofthefinalproductisthusoftendelicate.In2003,KnochelandCahiezreportedthecross-couplingbetweenheteroarylchloridesandaryl-orheteroarylmagne-siumhalides16(Scheme10).

Cobalt-CatalyzedCross-CouplingReactions

Scheme9.Cross-couplingbetweenDiaryltelluridesandAromaticGrignardReagents

Scheme10.CoCl2-CatalyzedCross-couplingbetweenHeteroarylChloridesandAromaticorHeteroaromaticGrignardReagents

Scheme11.CobaltorIronPowder-MediatedAryl-ArylCouplingReactions

Yieldsareexcellentinmostcases.Noteworthy,theinfluenceofsterichindranceisnotveryimportant.Thus,thereactionbetweenmesitylmagnesiumchlorideand1-chlor-oisoquinolineleadsto85%ofcouplingproduct.TwoequivalentsofGrignardreagentarerequired.

Interestingly,cobaltorironpowdersaresuitablecatalystsforthereaction16(Scheme11).

Oneyearlater,Oshima16breportedaverysimilarreaction.Thecouplingisachievedindioxaneinthepresenceofcobalt(II)acetylacetonatewhereasdiethyletherandcobalt(II)chloridewereusedinthepreviousmethod16a(Scheme10).Yieldsarecomparable,but3equivofphenylmagnesiumbromideareusedinsteadof2andtheamountofcatalystistwicehigher.

Theaboveexampleswereperformedbyusingheteroaromaticoractivedaromatichalides.Veryrecently,Nakamura17de-scribedacobalt-catalyzedcross-couplingreactionfromnonactivatedarylchloridesorheteroarylbromidesandaromaticGrignardreagents(Scheme12).Thereactionisperformedinthepresenceofcobalt(II)fluorideandNHCligand.

ChemicalReviews,2010,Vol.110,No.31439

Scheme12.Cobalt-CatalyzedCross-couplingbetweenNonactivatedArylHalidesorHeteroarylBromidesandAromaticGrignardReagents

Scheme13.Cobalt-CatalyzedCross-couplingbetweenFunctionalizedArylcyanocupratesandortho-Bromoorortho-ChloroAromaticKetones,Esters,orAldehydes

Then,Knochelhasshownthatthechemoselectivecouplingbetweenpolyfunctionalaryl-orheteroarylcyanocupratesArCu(CN)MgClandortho-bromoorortho-chloroaromaticketones,esters,oraldehydescanbeperformedundercobaltcatalysis.18Numerouspolyfunctionalbiarylsweresuccess-fullysynthesizedaccordingtothismethodology.SelectedexamplesarepresentedinScheme13.

Toreactthestartinghalidecompletely,itisessentialtoperformthecouplinginthepresenceofBu4NI(1equiv)and4-fluorostyrene(20mol%)byusingalargeexcessofcyanoarylcuprate(3equiv).19TheuseofaTHF/DME/DMPUmixtureinsteadofTHFasasolventclearlyacceleratesthereaction(15mininsteadof21h).

1440ChemicalReviews,2010,Vol.110,No.3Scheme14.Cobalt-CatalyzedReactionofp-Anisylcyanocuprateswitho-,m-,andp-Bromobenzophenones

Scheme15.Cobalt-CatalyzedCross-couplingbetweenHeteroarylcyanocupratesandActivatedArylBromides

Scheme16.Cobalt-CatalyzedCross-couplingbetweenActivatedArylFluoridesorTosylatesandArylcyanocuprates

Theyieldsaresignificantlylowerwhentheactivatingcarbonylgroupisinthemetaortheparaposition(Scheme14).

Heteroarylcyanocupratescanalsobeusedsuccessfully(Scheme15).

Thereactionhasbeenextendedtoortho-fluoroaromaticketones,esters,oraldehydes20(Scheme16).Thecorrespond-ingtosylatesalsoreactsuccessfully.Thisisworthyofnote,sincetheuseofarylfluorides21andtosylates22inmetal-catalyzedcross-couplingreactionsisnotusual.Asarule,goodtoexcellentyieldsareobtained.

Withpentafluorobenzophenone,thetwofluorineatomsintheortho-positionscanbeselectivelysubstituted(Scheme17).However,yieldsaremoderateand6equivofarylcy-anocupratearerequired.

3.2.2.FromTwoAromaticHalides

Veryrecently,Gosminireportedthesynthesisofunsym-metricalbiarylcompoundsbycouplingtwoaromatichalidesArXandAr′Xundercobaltcatalysis23(Scheme18).Theuseof2equivofthemorereactivearylhalideisgenerallyrequiredtoobtainsatisfactoryyieldsofcross-couplingproducts.

Similarresultswereobtainedfromaryliodides,bromides,orchlorides(Table5).Interestingly,aryltriflatesalsoreact

CahiezandMoyeux

Scheme17.Cobalt-CatalyzedCouplingReactionbetweenArylcyanocupratesandPentafluorobenzophenone

Scheme18.SynthesisofUnsymmetricalBiarylCompoundsbyCouplingTwoArylHalidesunderCobaltCatalysis

Table5.Cobalt-CatalyzedCouplingofTwoArylHalides:InfluenceoftheNatureoftheArylHalides

a

Isolatedyield.bYieldsinparenthesesrefertoGCyield.

Scheme19.Cobalt-CatalyzedCouplingReactionbetween󰀁-BromostyreneandMethylmagnesiumIodide

Scheme20.InfluenceofNMPontheCobalt-CatalyzedAlkenylationofGrignardReagents

successfully(Table5,entry7).Itshouldbeunderlinedthatasignificantamountofhomocouplingproductisproducedduringthereaction.Thisisapracticaldrawback,sincetheexpectedproductcouldthenbeverytrickytoisolate.

4.Csp2-Csp3Cross-couplingReactions4.1.Alkenylation

4.1.1.FromAliphaticOrganometallicReagents

In1945,Kharasch24showedthatthecouplingbetweenmethylmagnesiumiodideand󰀁-bromostyrenetakesplaceingoodyieldinthepresenceofcobaltchloride(Scheme19).

Cobalt-CatalyzedCross-CouplingReactions

Scheme21.Cobalt-CatalyzedAlkenylationofGrignardReagents:StereospecificityoftheReaction

Table6.Cobalt-CatalyzedCouplingbetweenAlkenylHalidesandAliphaticGrignardReagents

However,themethodislimitedtotheveryreactive󰀁-bromostyrene,and2equivofGrignardreagentarenecessary.

In1998,CahiezdiscoveredthattheuseofN-methylpyr-rolidone(NMP)asacosolventallowsadramaticimprove-ment(Scheme20;seealsosection3.1).Theyieldsareclearlybetter,andonly1.1equivofGrignardreagentisrequired.12Alkenyliodides,bromides,andchloridesgivegoodyieldsofcross-couplingproduct(Scheme21).

Itisimportanttonotethatthereactionisstereospecific(Scheme21).

Theprocedurehasbeenappliedtothesynthesisofvariousolefins(Table6).

Goodyieldsareobtainedbycouplingprimary(Table6,entries1-3)orsecondary(entries4-5)aliphaticGrignardreagentswithvariousalkenylbromides.ItisnoteworthythattertiaryaliphaticGrignardreagentsgivepoorresults(entry6).

Thereactionishighlychemoselective.Thus,thepresenceofanesterorevenaketogroupistolerated(Scheme22).Finally,itshouldbeunderlinedthat(E)-1,2-dichloroeth-ylenereactstogiveonlythecorresponding(E)-alkenylchlorides.Theformationoftheproductresultingfromasubstitutionofbothchlorineatomsisnotobserved(Scheme23).Thisresultisinsharpcontrastwiththatobtainedunder

ChemicalReviews,2010,Vol.110,No.31441

Scheme22.ChemoselectiveCobalt-CatalyzedAlkenylationofGrignardReagents

Scheme23.Synthesisof(E)-1-AlkenylChloridesfrom(E)-Dichloroethylene

Scheme24.Cobalt-CatalyzedAlkenylationofFunctionalizedOrganozincHalides

Scheme25.Cobalt-CatalyzedAlkenylationofBenzylzincBromide

ironcatalysis,since,inthiscase,thedoublesubstitutionproductisformedexclusively.25

CahiezandKnochelthenextendedthereactiontoalkylzinchalides.26Thesereagentsarelessreactivethanthecorre-spondingorganomagnesiumhalides,andthecouplingtakesplaceslowlyatahighertemperature(55°C,4-8h).Inaddition,20-30mol%ofcatalystandalargeexcessoforganozinchalide(3equiv)arenecessary.AswithGrignardreagents,12thereactionischemoselectiveandstereospecific.Goodyieldsofcross-couplingproductareobtained(Scheme24).

Itisworthyofnotethatbenzylicorganozinchalidescanbecoupledwithalkenyliodides(Scheme25).

ThecouplingofvarioussilylatedGrignardreagentswith1,2-dihalogenoethyleneswasalsoreported(Table7).27

Excellentyieldsareobtainedfromtrimethylsilylmethyl-magnesiumchloride(Table7,entries1and3)orphenyldim-ethylsilylmethylmagnesiumchloride(Table7,entry2).AspreviouslyreportedbyCahiez,12theformationofthedisubstitutedproductswasnotobserved.Itisnoteworthythatstereodifferentiationbetween(E)-and(Z)-1,2-dihaloethylenesispossible.Thus,byreactingamixtureof(E)-and(Z)-1,2-dibromoethylenes(5equiv)withtrimethylsilylmethylmag-nesiumchloride,theonlyproductisthe(E)-1-bromoalkene(Table7,entry3).

1442ChemicalReviews,2010,Vol.110,No.3

Table7.Cobalt-CatalyzedSelectiveCouplingbetween1,2-DihalogenoethylenesandPhMe2SiCH2MgClorMe3SiCH2MgCl

a

5equivof1,2-dibromoethylenewasused.

Table8.Cobalt-CatalyzedCross-couplingbetweenAlkenylHalidesandSilylatedGrignardReagents

a

Thereactionwasperformedat35°C.

Scheme26.Cobalt-CatalyzedAlkylationofStyrylmagnesiumBromide

Later,thecross-couplingbetweenalkenylhalidesanddimethylalkylsilylmethylmagnesium28chlorideswasreportedbyOshima.Goodtoexcellentyieldsareobtained(Table8).

R-or󰀁-monosubstitutedaswellas󰀁,󰀁-bisubstitutedalkenyliodides,bromides,orchloridesaffordgoodyields(entries1-6).Ontheotherhand,R,󰀁-bisubstitutedalkenylhalidesonlyleadtopoorresults(entry7).

4.1.2.FromAliphaticHalides

In2006,Oshima29describedthereactionbetweenoctylbromideandstyrylmagnesiumbromideinthepresenceof5mol%cobaltchlorideandN,N,N′,N′-tetramethyl-1,2-cyclo-hexanediamineasaligand(Scheme26).

Thesameyear,hereportedthecobalt-catalyzedcross-couplingbetweenvariousalkylhalidesand1-(trimethylsil-yl)ethenylmagnesiumbromidebyusingTMEDAasasol-

CahiezandMoyeux

Table9.Cross-couplingbetweenPrimaryorSecondaryAlkylHalidesand1-(Trimethylsilyl)ethenylmagnesiumBromide

a

Thetransisomerwasformedexclusively.

Table10.TandemRadicalCyclizationandCross-couplingReaction

a

Diastereomericratio.bTheproductwasisolatedasalactoneafteroxidationofthecyclicacetal.

vent.30Goodtoexcellentyieldsareobtainedfromeitherprimaryorsecondaryalkylhalides,butalargeexcessoforganometallicreagent(4equiv)hastobeusedandthereactionseemslimitedtothisspecificGrignardreagent(Table9).

Fromε-unsaturatedalkyliodides1,acyclicproductisformedviaaradicalcyclizationfollowedbyacross-couplingreaction(Table10).ThemechanismproposedbyOshimaisdepictedinScheme27.Thus,variousheterocycliccom-poundshavebeensynthesizedingoodtoexcellentyields.

4.2.Arylation

4.2.1.FromAliphaticHalides

Thefirstexampleofcobalt-catalyzedarylationofaCsp3centerwasdescribedin1969.Inthisreport,Hey31notedthattheyieldofthereactionbetween2-bromopyridineandmethylmagnesiumiodideisclearlyimprovedinthepresenceofcatalyticamountsofcobalt(II)chloride(Scheme28).

Cobalt-CatalyzedCross-CouplingReactions

Scheme27.MechanismforTandemRadicalCyclizationandCross-couplingReaction

Scheme28.FirstCobalt-CatalyzedArylationofAliphaticGrignardReagents

However,thereactionisnotgeneralandverypooryieldsareobtainedinmostothercases.

In2001,Oshima32describedthecobalt-catalyzedtandemradicalcyclizationandarylationreactionfromethylenichaloacetal2(Table11).Thismethodologyhasbeenappliedtothesynthesisofheterocyclic(entries1-7)andcarbocyclic(entry8)compounds.Itshouldbenotedthattheyieldclearlydependsonboththepositionandthenumberofsubstituentsonthesubstrate(entries4and6).ThemechanismproposedinthiscaseissimilartotheonedescribedinScheme27.Itisnoteworthythatwhenthedoublebondofthestartingproductisnotterminal(haloacetals3and4,Scheme29)thearylationproductisnotobtained.Inthiscase,thereactionleadstoaHeck-typeproduct(seesection9).

In2006,thisreactionwassuccessfullyappliedtothesynthesisofoxasilacyclopentanes(Scheme30).33

Thesecompoundscaneasilybeconvertedinto4-aryl-1,3-diolsbyTamao-Flemingoxidation.34ThisapproachhasbeenusedinasynthesisofanantagonistofhumanCCR5receptor(Scheme31).

Thesameyear,Oshimadescribedthecross-couplingbetweenprimaryalkylhalidesandaromaticGrignardreagentsinthepresenceofCoCl2(dppp).35SelectedexamplesarepresentedinTable12.ItmustbeunderlinedthatalargeexcessofGrignardreagentisrequired(3equiv).Asarule,moderateyieldsareobtainedfromprimaryalkylbromideswhereasthecorrespondingiodidesgivelowyields(entries1and2).Moreover,secondarycyclicalkylbromidessuchascyclohexylbromideleadtopoorresults(entry4)andalkylchloridesdonotreact.

ChemicalReviews,2010,Vol.110,No.31443

Table11.TandemRadicalCyclizationandCross-couplingReactionfromUnsaturatedHaloacetal2

a

Isolatedyield.Thediastereomericratioisgiveninparentheses.

Scheme29.Heck-TypeReactionfromUnsaturatedHaloacetals3and4

Scheme30.SynthesisofOxasilacyclopentanes

Heteroaromaticorganomagnesiumcompoundscanbeusedsuccessfully(entry5).Thereactionissensitivetosterichindrance;thus,ortho-substitutedarylGrignardreagentsdonotaffordtheexpectedcross-couplingproduct(entry6).Interestingly,somefunctionalgroupssuchasanesteroranacetalaretolerated(entries7and8).

Oshimahasfinallyshown29thatbetterresultsareobtainedbyusingadiamine(N,N,N′,N′-tetramethyl-1,2-cyclohex-anediamine)asaligandinsteadofdppp(Table13).Moreover,onlyaslightexcess(1.2equiv)ofGrignard

1444ChemicalReviews,2010,Vol.110,No.3

Scheme31.SynthesisofanAntagonistofHumanCCR5Receptor

Table12.Cobalt-CatalyzedCross-couplingbetweenPrimaryAlkylHalidesandAromaticGrignardReagents

a

Only3-chloropropylbenzeneisformed.

reagentisthenused.Withthiscatalyticsystem,theyieldsaresignificantlyhigherfromprimaryalkyliodidesthanfromthecorrespondingbromides(entries3and4).Inaddition,secondarycyclicandacyclicalkylhalides(entries1and2)canalsobeusedsuccessfully.Finally,thereactionislesssensitivetosterichindrance;asanexample,ortho-tolylmag-nesiumbromideleadstoanexcellentyield(entry7).

Thereactionishighlychemoselective,andvarioushalo-genoesterswerecoupledsuccessfully(entries9-11).ThismethodologyhasbeenappliedtothesynthesisofAH13205,asyntheticprostaglandinusedasanEP2-receptoragonistthatlowersintraocularpressure(Scheme32).36

Thereactionoffive-andsix-memberedcyclichaloacetals5havingastereogeniccenterintheRpositionoftheC-Brbondhasbeenexamined(Scheme33).Thestereoselectivityofthisreactionishighlydependentonthesizeofthering.Thus,goodenantioselectivitywasonlyobtainedwiththefive-memberedcyclicacetal.

Veryrecently,Cahiez37describedthecobalt-catalyzedcross-couplingbetweenprimaryorsecondaryalkylbromides

CahiezandMoyeux

Table13.Cobalt-CatalyzedCross-couplingbetweenPrimaryorSecondaryAlkylHalidesandAromaticGrignardReagents

Scheme32.SynthesisofAH13205

andaromaticorganomagnesiumcompounds.Acheapandsimplecatalyticsystem,cobalt(III)acetylacetonate/TMEDA(1:1),isused.Thisisveryinteresting,sincecommercialTMEDAisaverysimpleandinexpensivestartingmaterialcomparedtotheN,N,N′,N′-tetramethyl-1,2-cyclohexanedi-aminepreviouslyemployedbyOshima.29

Itispossibletocouplesecondaryalkylbromideswithexcellentyields,whereas,undertheconditionsdescribedbyOshima,29alkylbromidesleadtoclearlyloweryieldsthanalkyliodides.Thispointisveryinteresting,sincealkyl

Cobalt-CatalyzedCross-CouplingReactions

Scheme33.Cobalt-CatalyzedStereoselectiveArylationofCyclicHaloacetals5

Table14.Cobalt-CatalyzedCross-couplingbetweenAliphaticBromidesandAromaticGrignardReagents

bromidesarecheaperandmorestablethanthecorrespondingiodides.ResultsaresummarizedinTable14.

Asarule,excellentyieldsareobtainedfromprimaryandsecondaryalkylGrignardreagents(entries1-8).Ontheotherhand,tertiaryalkylbromidescannotbeused(entry9).Itshouldbeunderlinedthatonlyaslightexcess(1.1equiv)ofGrignardreagentwasused.Alkyliodidesandbromidesleadtosimilarresults(entries3-4)whereasalkylchloridesortosylatesonlyaffordpooryields(entry5).

Thereactionisnotverysensitivetosterichindrance,anditispossibletocoupleanortho-substitutedaromaticGrignardreagentwithasecondaryalkylbromideinhighyields(entry8).

Thereactionishighlychemoselective(Table15).Thus,1-bromo-5-chloropentanecouplesselectivelytogivethecorrespondingalkylchlorideingoodyield(entry1).Inaddition,thepresenceofvarioussensitivegroupssuchasanacetate(entry2),anester(entry3),anamide(entry4),orevenaketone(entry5)istolerated.

Thereactionisalsohighlychemoselectiveinthecaseofsecondaryalkylbromides(Scheme34).Itisthefirstreportofametal-catalyzedcross-couplingbetweenanaromaticGrignardreagentandafunctionalizedsecondaryalkylbromide.

ChemicalReviews,2010,Vol.110,No.31445

Table15.Cross-couplingofArylGrignardReagentswithFunctionalizedPrimaryAlkylBromides

Scheme34.Cobalt-CatalyzedChemoselectiveArylationofFunctionalizedSecondaryAlkylBromides

Scheme35.Cobalt-CatalyzedCross-couplingbetweenArylBromidesandAlkylGrignardReagents

4.2.2.FromAromaticHalides

In2008,Oshima38describedthecobalt-catalyzedcouplingbetweenarylbromidesandaliphaticGrignardreagents(Scheme35).Itistheonlyreportinthisfield.Thisreactionisaninterestingalternativetotherelatedpalladiumornickelprocedures.

Yieldsaregenerallygoodtoexcellent;however,thisreactioncanonlybeappliedtoprimaryalkylGrignardreagents.

1446ChemicalReviews,2010,Vol.110,No.3

Scheme36.Cobalt-CatalyzedCouplingbetweenAllylAcetateandFunctionalizedArylBromides

Scheme37.Cobalt-CatalyzedCouplingbetweenAllylAcetateandFunctionalizedArylChlorides

4.3.AllylationofAromaticOrganometallics

In2003,Pe´richonreportedthecouplingofarylhalideswithallylacetatesinthepresenceofacatalyticamountofcobaltbromide;zincisusedasareductant.39

Moderateyieldswereobtainedfromvariousarylbromides(Scheme36).Itshouldbenotedthatthepresenceofanesteroranitrileistolerated.Thismethodiscomplementarytothecobalt-catalyzedelectrochemicalmethodspreviouslyreported.40

Thereactioncanalsobeachievedwitharylchlorides(Scheme37),butthereactionconditionsareverydifferent.Itisnecessarytoincreasetheamountofcobaltbromide(40%insteadof20%),zincdusthastobereplacedbymanganesedustasareductant,andthepresenceofpyridineaswellasastoichiometricamountofironbromideisrequired.More-over,thecouplingisperformedatahighertemperature(50°C),andthereactiontimeislonger(24h).However,yieldsaregenerallybetterthanthosepreviouslyobtainedfromthecorrespondingarylbromides.

In2004,Oshima41describedthereactionbetweenallylicethersandphenylmagnesiumbromideinthepresenceofcobaltsalts.Goodyieldswereobtained,butthereactionisnotregioselective,exceptedwith1-and3-phenyl-2-propenylmethylethers(Scheme38).

Undersimilarconditions,allylicacetalsleadtothemonosubstitutionproduct(Scheme39).

5.Alkynylation5.1.PioneeringWorks

In1945,Kharasch42

reportedthecouplingbetweenme-thylmagnesiumbromideand2-bromo-1-phenylacetylenein

CahiezandMoyeux

Scheme38.Cobalt-CatalyzedCross-couplingbetween1-and3-Phenyl-2-propenylMethylEthersandPhenylmagnesiumBromide

Scheme39.Cobalt-CatalyzedArylationofAllylicAcetals

Scheme40.Cobalt-CatalyzedCouplingbetween

2-Bromo-1-phenylacetyleneandMethylmagnesiumBromide

Scheme41.Cobalt-CatalyzedCouplingbetween

PhenylethynylmagnesiumBromideandPhenylethynylIodide

Table16.Cobalt-CatalyzedAlkynylationofVariousGrignardReagents

thepresenceofcobaltchloride(Scheme40).Itisthefirstexampleofcobalt-catalyzedalkynylationofGrignardreagents.Afewyearslater,thecobalt-catalyzedcouplingbetweenphenylethynylmagnesiumbromide43andphenylethynyliodidewasreported(Scheme41).Asatisfactoryyieldofdiphe-nylbutadiynewasobtained.

In19,severalexamplesofcouplingbetweenaliphatic,aromatic,oracetylenicGrignardreagentsand1-haloalkyneswerereportedbyWeedon.44Asarule,onlypooryieldswereobtained(Table16).

5.2.BenzylationofAcetylenicGrignardReagents

In2006,OshimareportedthebenzylationofacetylenicGrignardreagentsundercobaltcatalysis.45Moderatetoexcellentyieldsareobtained(Table17).

Cobalt-CatalyzedCross-CouplingReactions

Table17.Cobalt-CatalyzedBenzylationofAlkynylmagnesiumHalides

Scheme42.PreparationofDiynesfrom

1,2-Bis(bromomethyl)-or1,3-Bis(chloromethyl)benzene

Scheme43.Cobalt-CatalyzedCross-couplingbetweenPrimaryorSecondaryAlkylBromidesand1-TrimethylsilylethynylmagnesiumBromide

Trimethylsilylethynylmagnesiumbromidereactswithben-zylicchloridesorbromidestogivegoodyieldsofcross-couplingproducts(entries1-4,R)Me3Si).Ontheotherhand,onlybenzylicbromidesleadtogoodresultsfrom1-hexynylmagnesiumbromide(entry1,R)n-Bu).

With1,2-bis(bromomethyl)-or1,3-bis(chloromethyl)ben-zene,thedoublesubstitutionispossibleandthereactionaffordsdiynes(Scheme42).

5.3.AlkylationofAcetylenicGrignardReagents

Recently,Oshimareportedthereactionbetweenalkylhalidesandtrimethylsilylethynylmagnesiumbromideinthepresenceofcobaltchloride.29Satisfactoryyieldsareobtainedfromprimaryorsecondaryalkylhalides(Scheme43),butalargeexcessofGrignardreagentisused.

ε-Haloalkenes6reactwithtrimethylsilylethynylmagnesiumbromideaccordingtoatandemradicalcyclizationandcross-

ChemicalReviews,2010,Vol.110,No.31447

Table18.Cobalt-CatalyzedTandemRadicalCyclizationandAlkynylationReaction

a

Diastereomericratio.bTheproductwasisolatedasalactoneafteroxidationofthecyclicacetal.

Scheme44.Cobalt-CatalyzedTandemRadicalCyclizationandAlkynylationReaction

couplingreaction.Variousheterocycliccompoundshavethusbeensynthesizedinmoderatetogoodyields(Table18).Oshima46showedthatsimpleacetylenicGrignardreagentscanalsobeused(Scheme44).

However,itisimportanttonotethat5equivofGrignardreagenthavetobeusedinthiscase.

5.4.AlkenylationofAcetylenicGrignardReagents

Thecobalt-catalyzedcouplingbetweenalkynylmagnesiumhalidesandalkenyltriflateswasdescribedbyHayashiin2007.47Goodtoexcellentyieldsareobtainedfromawiderangeofsubstrates(Scheme45).

Someexamplesofchemoselectivecouplingsinthepres-enceofanalkenyl,analkyl,oranarylbromidearedescribed(Table19).Itisnoteworthythatnoadditionalligandwasusedinthiscase.

1448ChemicalReviews,2010,Vol.110,No.3

Scheme45.Cobalt-CatalyzedCouplingbetweenAlkenylTriflatesandAlkynylGrignardReagents

Table19.ChemoselectiveCobalt-CatalyzedAlkenylationofAcetylenicGrignardReagents

Scheme46.Cobalt-CatalyzedAllylationofDiorganozincCompounds

6.Csp3-Csp3Cross-coupling6.1.Allylation

6.1.1.AllylationofAliphaticOrganozincCompounds

In1996,Knochel48describedtheallylationoforganozinccompounds(R2ZnorRZnX)undercobaltcatalysis(Scheme46).

ItshouldbepointedoutthatbothRgroupsfromRaretransferred.Moreover,onlytheSNsubstitution2Znproductsareobtained.Dialkylzincsandalkylzinc2halidesgivesimilaryields,butthelatterrequirelongerreactiontimes(about5hat-10°C).

Allylicphosphatescanalsobeusedsuccessfully(Scheme47).

6.1.2.AlkylationofAllylicGrignardReagents

ThecouplingbetweenunactivatedalkylhalidesandallylicGrignardreagentsinthepresenceofcobaltchloride

CahiezandMoyeux

Scheme47.Cobalt-CatalyzedCouplingbetweenDiethylCinnamylPhosphateandDipentylzinc

Table20.Cobalt-CatalyzedCouplingbetweenUnactivatedAlkylHalidesandAllylmagnesiumChloride

a

trans/cis)86:14.bdppewasusedasaligand.

Scheme48.Cobalt-CatalyzedAlkylationofCrotyl-andPrenylmagnesiumChlorides

anddpppwasdescribedbyOshimain2002(Table20).49Goodyieldsareobtainedundermildconditionsfromprimary(entry1),secondary(entries2and3),ortertiary(entries4and5)alkylhalides.Benzylichalidescanalsobeused(entry6).

WithsubstitutedallylicGrignardreagents,theregiose-lectivityisverydependentonthestructureoftheallylicmoiety.Amixtureofproductsresultingfromanalkylationonthelessandthemoresubstitutedsidesoftheallylicsystemisgenerallyobtained(Scheme48).

Atandemradicalcyclizationandcross-couplingreactionwasusedtopreparevariouscycliccompoundsingoodtoexcellentyields(Scheme49).Forthemechanismofthereaction,seeScheme27.

Unexpectedly,byusingetherasasolvent,acyclopropanederivativeisformed(Scheme50).

Thefollowingmechanismisproposed.Atfirst,cobaltchlorideisconvertedtoanactivereducedspecies[Con]byactionoftheGrignardreagent.Afterasingleelectrontransfertothehalide(formationofaradicalanion)andthencleavageoftheC-Ibond,aradicalisobtained.Sequential5-exoradicalcyclizationandtrappingoftheresultingradicalbythecatalyticcobaltspeciesthenaffordthecobaltintermediate10.Indiethylether,10undergoes

Cobalt-CatalyzedCross-CouplingReactions

Scheme49.Cobalt-CatalyzedTandemRadicalCyclizationandAlkylationofAllylicGrignardReagents

Scheme50.MechanismoftheCobalt-CatalyzedReactionofδ-IodoallylicAcetal9withAllylmagnesiumChloride

Scheme51.Cobalt-CatalyzedReactionofδ-IodoallylicAcetal9withCrotyl-andPrenylmagnesiumChlorides

arapideliminationofBuO-Metal(Metal)CoorMg)togivethecyclopropanederivative11.Suchaneliminationprobablyinvolvesthecomplexationofthemetalliccenterof10(CoorMg)withtheoxygenatomofthebutoxygroup(inTHF,thiscomplexationismuchmoredifficultandtheeliminationdoesnotoccur).Theresultingalde-hyde11thenreactswithallylmagnesiumchloridetoaffordthealcohol12.

Thereactionwasextendedtoprenyl-orcrotylmagnesiumchlorides(Scheme51).

6.1.3.AllylationofTrimethylsilylmethylmagnesiumChloride

Thecouplingbetweenallylicethersandtrimethylsilylm-ethylmagnesiumchlorideundercobaltcatalysiswasreportedin2004.41Aswithphenylmagnesiumbromide(seesection4.3),goodyieldsandselectivityareobtainedfrom1-and3-phenyl-2-propenylmethylethers(Scheme52).However,thereactionisgenerallynotregioselectivewiththeotherallylicethers.

Itisnoteworthythat,fromallylicacetals13(Scheme53),itispossibletosubstituteoneortwomethoxygroupsbyusingrespectively1.5or3equivofGrignardreagent.

ChemicalReviews,2010,Vol.110,No.31449

Scheme52.Cobalt-CatalyzedCross-couplingbetween1-and3-Phenyl-2-propenylMethylEthersandTrimethylsilylmethylmagnesiumChloride

Scheme53.Cobalt-CatalyzedCouplingofAllylicAcetalswithTrimethylsilylmethylmagnesiumChloride

Scheme.Cobalt-CatalyzedCouplingbetween

AllylmagnesiumBromideandCinnamylMethylEther

Scheme55.Cobalt-CatalyzedBenzylationof4-AcetoxybutylzincIodide

6.1.4.AllylationofAllylicGrignardReagents

Acobalt-catalyzedcouplingreactionbetweenallylicGrignardreagentsandallylicethershasbeendescribedbyOshima(Scheme).41

Goodyieldsareobtained.Interestingly,theregioselectivityofthereactioncanbeeasilycontrolledbychangingthenatureofthecatalyst.Thus,onlythelinearsubstitutionproduct14isformedinthepresenceofuncomplexedcobaltchloridewhereasthebranchedsubstitutionproduct15isthemainisomerwhenthecomplexCoCl2•dpppisused.

6.2.Benzylation

Anexampleofcobalt-catalyzedbenzylationofanorga-nozinccompound(Scheme55)wasreportedbyKnochelin1996.48

In2004,OshimaachievedthecouplingbetweensecondaryalkylhalidesandbenzylicGrignardreagentsinthepresenceofCoCl2•dppp.Asarule,yieldsaremoderate(Table21).49Tertiaryalkyliodidesalsoreactbutleadtopooryields(entry7).

1450ChemicalReviews,2010,Vol.110,No.3

Table21.Cobalt-CatalyzedAlkylationofBenzylicGrignardReagents

a

3equivofGrignardreagentwasused.

Table22.Cobalt-CatalyzedTandemRadicalCyclizationandAlkylationReactionofVariousδ-IodoEthylenicCompoundswithRMe2SiCH2MgCl

a

Diastereomericratio.

6.3.Alkylation

In2007,Oshimareportedthetandemradicalcyclizationandcross-couplingreactionofvariousδ-halogenoethyleniccompoundswithRMe-Heterocycliccarbenes2SiCHare2MgClundercobaltcatalysis.46Nemployedasligands.Asarule,goodyieldsareobtainedundermildconditions.SelectedexamplesareshowninTable22.

Veryrecently,Cahiezdescribedthecross-couplingbe-tweenfunctionalizedalkylhalidesandaliphaticGrignard

CahiezandMoyeux

Table23.Cobalt-CatalyzedAlkyl-AlkylCouplingReaction:EffectofIodideAnionontheCourseoftheReaction

EntryCatalyticsystem(5mol%)Yield(%)1CoCltraces2CoCl2

3532;4TMEDA

CoCl274CoCl2•2LiCl;4TMEDA5

2•2LiBr;4TMEDA30CoCl2•2LiI;4TMEDA

79

Table24.Cobalt-CatalyzedCouplingbetweenUnactivatedAlkylHalidesandAliphaticGrignardReagents

a

Amixtureofdecaneand1-decenewasmainlyobtained.

reagentsinthepresenceoftheatecomplexCoClaligand.

2•2LiI.50TMEDAisusedasByusingcobaltchlorideasacatalyst,onlytracesofcross-couplingproductareobtained(Table23,entry1).InthepresenceofTMEDA,theyieldisbetterbutremainsunsatisfactory(entry2).Finally,thebestresultsareobtainedbyaddingbothTMEDAandlithiumiodide(entry5).Itisthefirstexampleofsuchabeneficialinfluenceofiodideaniononthecourseofacobalt-catalyzedcross-couplingreaction.

Variousalkyl-alkylcouplingswereperformedundertheseconditions(Table24).Acyclicorcyclicsecondaryalkylbromides(entries1-8)gavemoderatetogoodyieldsofcross-couplingproduct.Itisimportanttonotethattheinfluenceofstericeffectsisdeterminant.Thus,2-bromopen-tanegaveabetteryieldthan3-bromopentane(entries5and6).Similarly,theresultsobtainedwithvarious2-bromoal-kanesclearlydependonthelengthofthealkylchain(entries1,3,and7).Itispossibletousealkyliodidesinplaceofbromides,butthecorrespondingchloridesdonotreact(entries2-4).

Thereactionhasbeensuccessfullyextendedtoprimaryalkylbromides(entries9and10).Ontheotherhand,tertiaryalkylbromidesdonotreact(entry11).Finally,itshouldbenotedthatsecondaryortertiaryalkylGrignardreagentscannotbeused(entries12and13).

Thereactionischemoselective(Table25),thus,anester(entries1and2),anitrile(entry3),orevenaketogroup(entry4)aretolerated.Itshouldbeunderlinedthatfunc-

Cobalt-CatalyzedCross-CouplingReactions

Table25.Cobalt-CatalyzedCouplingbetweenFunctionalizedAlkylHalidesandAliphaticGrignardReagents

Scheme56.Cobalt-CatalyzedChemoselectiveAlkyl-AlkylCouplingReactionfromFunctionalizedSecondaryAlkylHalides

Scheme57.Cobalt-CatalyzedAcylationofMethyl-andPhenylmagnesiumBromides

tionalizedsecondaryalkylhalidescanalsobeusedsuccess-fully(Scheme56).

Itisthefirstexampleofchemoselectivealkyl-alkylcouplingfromafunctionalizedsecondaryalkylbromide.

7.Acylation

7.1.FromOrganometallicCompounds

In1943,Kharaschshowedthatmethyl-orphenylmagne-siumbromidesreactwithmesitoylchlorideinthepresenceofcobaltchloridetogivetheexpectedketonesinmoderateyields(Scheme57).51Itisthefirstreportofacobalt-catalyzedacylationoforganometalliccompounds.

Fiftyyearslater,KnochelshowedthatdiorganozincsreactwithcarboxylicacidchloridesinthepresenceofcobaltbromideinaTHF/NMPmixtureasasolvent(Scheme58).48Excellentyieldsareobtainedwitharomaticandaliphaticcarboxylicacidchloridesaswellaswithoxalylchlorideandtrifluoroaceticanhydride.Itishoweverimportanttonotethatthreeequivalentsofdiorganozinccompoundhavetobeused(i.e.,6equivoforganometallicreagent).

7.2.Cobalt-MediatedAcylationofArylBromides

Thecobalt-mediatedsynthesisofaromaticketonesfromarylbromidesandcarboxylicacidanhydrideswasreportedbyPe´richon52in2004(Table26).Thereactionisperformedinthepresenceofacatalyticamountofcobaltbromidebyusingastoichiometricamountofzincasareductant.

ChemicalReviews,2010,Vol.110,No.31451

Scheme58.Cobalt-CatalyzedAcylationofDiorganozincs

Table26.Cobalt-MediatedReactionbetweenArylBromidesandCarboxylicAcidAnhydrides

EntryArylbromideRYield(%)1p-MeO-CMe672p-MeO-C6H4Brn-Bu793-MeO-C6H4BrpPh4-C6H4Brp-NCMe56HH4Brp-NC-Cn-Bu766p-NC-CBrPh30a7-EtO6H4Brp6282C-C6H4BrMep-EtOn-Bu7-EtO2C-C-C6H4Brp33b102CPhH6H4Brp-F-CMe69a11p-FC-6C4Br61a1236H4BrMem-MeO-CMe7213-C6H4Brm-NCMe34b14

m-F6H4Br3C-C6H4Br

Me

71a

a

10mol%CoBr2wasused.b7.5mol%CoBr2wasused.

Variouspara-(entries1-11)ormeta-substituted(entries12-14)functionalizedarylbromidesreactsuccessfully.Asarule,aliphaticacidanhydridesgivegoodresultswhereasaromaticacidanhydridesonlyleadtomoderateyields(entries3,6,and9).

8.Reactions

ReductiveCyclizationandHeck-Type8.1.RadicalCyclization

Itiswell-knownthatvariouscobalt(II)complexesreactwithalkylorarylhalidesviaahalogenatomtransfertoleadtothecorrespondingalkylorarylradicals.53,Cyclizationviaaninter-oranintramoleculartrappingoftheradicalthusgeneratedprovidesaneasyaccesstovariouscycliccompounds.

8.1.1.IntramolecularRadicalCyclization

8.1.1.1.Radical-MediatedAryl-ArylCoupling.Cobalt-catalyzedreductivecyclizationhasbeenreportedforthefirsttimebyTiecco55in1965(Scheme59).

8.1.1.2.Fromδ-HalogenoAcetylenicCompounds.In1982,Tada56reportedthereductivecyclizationof2-prop-argyloxyalkylbromidesinthepresenceofbis(dimethylgly-

1452ChemicalReviews,2010,Vol.110,No.3Scheme59.Cobalt-CatalyzedCyclizationviaaRadical-MediatedAryl-ArylCoupling

Table27.Cobaloxime(I)-CatalyzedReductiveCyclizationof2-PropargyloxyalkylBromides

EntryRR1R2Yield(%)

1PhPhH852PhMeH733PhH

H78

4H-(CH5

H

-(CH2)4-2)3-

48

*Cobaloxime(I))[bis(dimethylglyoximato)(pyridine)cobalt(I)].

Scheme60.Cobaloxime(I)-CatalyzedReductiveCyclizationofHalogenoPropargylAcetals16

oximato)(pyridine)cobalt(I),generallycalledcobaloxime(I),byusingastoichiometricamountofsodiumborohydrideasareductant.ResultsarereportedinTable27.

Goodyieldsofexomethylenefuranesareobtainedfromprimaryalkylhalides(entries1-3).Cyclicalkylhalidesleadtobicycliccompoundsinsatisfactoryyields(entries4and5).

In19,Hoffmann57appliedthereactiontothesynthesisofvariousheterocycliccompounds(Scheme60).8.1.1.3.Fromδ-HalogenoEthylenicCompounds.In1984,Pattenden58describedtheradicalcyclizationof2-al-lyloxyalkylbromidesusingcobaloximeorVitaminB1259asacatalystundertheconditionsdescribedbyTada(Table27)for2-propargyloxyalkylbromides.56Theorganocobaltspeciesresultingfromthecyclizationundergoesa󰀁-hydro-geneliminationtogiveabicyclicproductingoodyields(Scheme61).

Afewyearslater,Jones60reportedasimilarreactioncatalyzedbyacobalt-salencomplex.Amixtureofsaturatedandunsaturatedproducts17and18isobtainedinallcases(Scheme62).

Thereafter,Giese61showedthatitispossibletoformselectivelythesaturatedortheunsaturatedproducts19and20bychangingthereactionconditions(Table28).

CahiezandMoyeux

Scheme61.Cobaloxime(I)-orVitaminB12-CatalyzedRadicalCyclizationof2-AllyloxyalkylBromides

Scheme62.RadicalCyclizationCatalyzedbyCobalt(I)-Salen

Table28.RadicalCyclizationCatalyzedbyCobalt(I)-Salen:InfluenceoftheNatureoftheReducingSystemontheOutcomeoftheReaction

Ratio19/20(yield%)Reactionconditions

20mol%catalyst,1mol%catalyst,Entry

RZn,DMF,hυ

Zn/NH4Cl,DMF

1H81/19(80)1/99(80)2

Ph

99/1(90)

3/97(88)

Scheme63.TandemRadicalCyclizationandMichaelAdditionReaction

Interestingly,theradical(ortheorganocobaltspecies)obtainedafterthecyclizationstepcanbetrappedbyusingareactiveMichaelacceptorsuchasanacrylicester(Scheme63).61

In1994,Jones62performedthereductivecyclizationofortho-amidoiodobenzenes21inmoderatetogoodyieldsinthepresenceofcobaltchloridebyusingmethylmagnesiumiodideasareductant(Scheme).Alargeamountofcatalystisrequired(50mol%).

Cobalt-CatalyzedCross-CouplingReactions

Scheme.Cobalt-CatalyzedRadicalCyclizationofortho-Amidoiodobenzenes21

Scheme65.CoCl2•dppb-CatalyzedRadicalCyclizationofδ-HalogenoEthylenicCompounds

ItispossibletolowertheamountofcatalystbyusingacomplexcobaltCoCl2(dppb).Thus,Oshima63achievedtheradicalcyclizationofδ-halogenoethyleniccompoundsinthepresenceofCoClmagnesiumchloride2(dppb)byusingtrimethylsilylmethyl-asareductant(Scheme65).Variouscyclopentanederivativeswerepreparedingoodyields.

8.1.2.CyclizationviaanIntermolecularRadicalAddition

In2003,Chengreportedthereactionofvariouso-iodoarylketonesandaldehydeswithalkynesorconjugatedalkenesinthepresenceofCoIamountofzincasareductant.2•dppeandastoichiometricThecyclizationreactionproceedsviaatandemcarbometalationandintramolecular1,2-additiontotheketone.

Sucha65reactionhad66beenpreviouslydescribedunderpalladiumornickelcatalysis.Nevertheless,thecobalt-catalyzedreactiongiveshigheryieldsandbetterregioselec-tivitiesundermilderconditions.Inaddition,thereactiontimesareshorter(Table29).

Goodtoexcellentyieldsareobtainedfromo-iodoarylketones(Table29,entries1-5)oraldehydes(entries6-9).Whenunsymmetricalalkynesareused,amixtureoftworegioisomers22and23isobtained(entries2and7).Interestingly,withtrimethylsilylpropyneorethyltrimethyl-silylpropiolate,theregioselectivityisexcellent,sinceonlycompound22isformed(entries3-5and8).

Asimilarreactiontakesplacebyusingvariousacrylicestersinsteadofalkynes(Table30).

Itisnoteworthythatitispossibletoperformathree-componentreactionbetweeno-iodobenzaldehyde,p-tolui-dine,andalkynestoformheteroatom-substitutedderivatives67(Scheme66).

8.2.Cobalt-CatalyzedHeck-TypeReactions

TheHeckreaction68,69isapowerfultoolfortheelaborationofcarbon-carbonbonds.However,thereac-tionstillsufferssomelimitations.Thus,theuseofalkylhalideshavinghydrogen(s)atom(s)inthe󰀁-positiontothehalideatomleadstopoorresults,sincetheintermediatecatalyticalkylpalladiumspeciesundergoesaveryfast

ChemicalReviews,2010,Vol.110,No.31453

Table29.Cobalt-CatalyzedCarbocyclizationofortho-IodoarylKetonesandAldehydeswithAlkynes

a

Ratio22/23.

Table30.IntermolecularCyclizationofortho-IodoarylKetonesandAldehydeswithAcrylicEsters

󰀁-hydrogenelimination.Interestingly,thecobalt-catalyzedHecktypereactioniscomplementarytotheclassicalpalladium-catalyzedreaction,sinceitallowsavoidanceofthisdrawback.

In1991,Branchaud70reportedthefirstcobalt-catalyzedHeck-typereactionbetweenstyreneandvariousalkylhalides(Table31)inthepresenceofcobaloxime(II)andastoichio-metricamountofzincasareductant.Itshouldbenotedthatexposuretodaylightisnecessary.

14ChemicalReviews,2010,Vol.110,No.3

Scheme66.Cobalt-CatalyzedThree-ComponentCyclizationReaction

Table31.Cobaloxime-CatalyzedHeck-TypeReaction

Primary(Table31,entries1-3and6)andsecondary(entry4)alkylbromidesleadtomoderateyieldswhereasthereactionfailedwithtertiaryalkylbromides(entry5).Later,OshimareportedthatexcellentyieldswereobtainedbyusingCoCl2•dpphasacatalystandtrimethylsilylmethyl-magnesiumchlorideasareducingagent(Table32).71a

Primary(Table32,entries1-3),secondary(entries4-5and8-10),andeventertiary(entry6)alkylhalidesreacttogivegoodtoexcellentyields.Asarule,alkylbromidesaffordbetteryieldsthanthecorrespondingiodidesorchlorides(entries1-3).Functionalizedstyrenederivativescanbecoupledefficiently(entries7-10).Itisinterestingtonotethatthereactioncanbeachievedstereoselectively(Scheme67).

Adetailedmechanisticstudywasperformed(Scheme68).

Atfirst,0CoCl•dpph2•dpph[A]reactswithMe[B],whichistherealcatalyst.3SiCHA2MgCltogiveCosinglemonoelectronictransfertothealkylhalideleadstotheCoIspecies[C]thatreactswithMeThisonereacts3SiCHwith2MgCltogivetheintermediate[D].thebenzylicradicalaccruingfromRXtoproducethediorganocobalt

CahiezandMoyeux

Table32.CoCl2(dpph)-CatalyzedHeck-TypeReaction

Scheme67.Cobalt-CatalyzedDiastereoselectiveHeck-TypeReaction

Scheme68.MechanismoftheCoCl2(dpph)-CatalyzedHeck-TypeReaction

[E].TheHeckproductRCHdCHPhisthenobtainfrom[E]by󰀁-hydrogenelimination.Finally,Co0•dpph[B]isregeneratedfromthehydridocobaltspecies[F]byreduc-tiveelimination.

ItisIIIimportanttonotethatamechanisminvolvingaCoI/CocouplelikethisoneproposedforthevitaminB12-orthecobaloxime-mediatedreaction60,61cannotbediscarded.

Thecobalt-catalyzedHeck-typereactionbetweenanepoxideandstyrenehasalsobeendescribed(Table33).72

Cobalt-CatalyzedCross-CouplingReactions

Table33.Cobalt-CatalyzedHeck-TypeReactionbetweenEpoxidesandStyrene

EntryRYield(%)

24/251Me5779:212n-Bu5857:433c-C4863:37a4

6Ht-Bu

1126

>99:1

a

Tolueneisusedassolvent.

Scheme69.VitaminB12-CatalyzedMichael-likeAddition

Scheme70.EnantioselectiveCobalt-MediatedMichaelAdditiontoChalcone

Thereactionleadstomoderateyields,andamixtureofisomersisobtained.Thus,exceptinthecaseofahinderedepoxide,thestereoselectivityofthereactionisverypoor(Table33,entry4).

9.MiscellaneousReactions

9.1.Cobalt-MediatedMichaelAddition

Asmentionedabove,alkylandarylradicalsaregeneratedbyreactinganalkyloranarylhalidewithvariouscobalt(II)complexes(seesection8).

DiastereoselectiveconjugateadditionoftheradicalsthusobtainedtoactivatedalkeneshasbeenstudiedforthefirsttimebyGiese73in1992(Scheme69).ThereactionisperformedbyusingacatalyticamountofvitaminB12andzincasareductant.

In1998,Pfaltz74obtainedapooryield,butapromisinghighenantiomericexcess,byreactingtert-butylmalonatewithchalconeinthepresenceofcobaltacetateandthechiralmacroheterocyclicligand28(Scheme70).

Abetteryield,butamoderate75enantiomericexcess,wasobtainedbyWuandZhoubyreactingethylmalonateinthepresenceofasimilarcatalyticsystem(Scheme71).

ChemicalReviews,2010,Vol.110,No.31455

Scheme71.EnantioselectiveCobalt-CatalyzedMichaelAdditiontoChalcone

Scheme72.Cobalt-CatalyzedMichaelAdditiontoVariousActivatedAlkenes

Table34.Cobalt-MediatedMichaelReactionbetweenArylHalidesorTriflatesandActivatedAlkenes

EntryFGXEWGYield(%)1p-COBrCO802p-CO2EtBr2EtCN853p-CO2EtOTfCO72a4p-CN2EtBr2EtCO70a5p-CNBrCN2Et77a6p-CNClCO667

p-CN

OTf

CO2Et2Et

69a

a

20mol%ofcatalystwasused.

In2006,acobalt-mediatedMichaeladditionwasper-formedwithalkylbromidesandactivatedalkenesinthepresenceofCoI2(dppe)andzincasareductant.76Goodtoexcellentyieldsareobtained(Scheme72).

Finally,acobalt-mediatedMichaeladditionfromarylhalidesortriflatesandactivatedalkeneshasalsobeendescribedbyPe´richon(Table34).77Arylbromides(entries1,2,4,and5),chlorides(entry6),ortriflates(entries3and7)givesimilaryields.Thereactionischemoselective;thus,esterandcyanogroupsaretolerated.

9.2.Allylationof1,3-DicarbonylCompounds

Theallylationof1,3-dicarbonylcompoundsundercobaltcatalysishasbeenreportedbyIqbal.78Thereactioncanbeperformedunderneutralconditions,contrarytothepal-ladium-79orthemolybdenum-catalyzed80reactions.There-fore,theuseofbase-sensitivesubstrateslike30ispossible.SelectedexamplesaregiveninTable35.

1456ChemicalReviews,2010,Vol.110,No.3

Table35.Cobalt-CatalyzedAllylationof1,3-DicarbonylCompoundswithAllylicAcetates

Table36.Cobalt-CatalyzedAllylationof1,3-DicarbonylCompoundswithAllylicAlcohol

EntryZRR1R2Catalyst33/34Yield(%)

1HMeMePrCoIII

DMG1/8612AcMeMePrCoCl1/3683HOMePhEtCoIIIDMG2

1/94AcOMePhEtCoCl1/3555HOMeMeBuCoIIIDMG2

100/0536

Ac

OMe

Me

Bu

CoCl2

1/1.5

24

Moderatetogoodyieldsareobtained.Regio-andstereo-selectivityheavilydependonthenatureofthesubstrate;amixtureofisomersisoftenobtained.

Thisreactionhasthenbeenextendedtoallylicalcohols81(Table36).

9.3.Reactions

ActivationofC-HBonds:C-NCouplingTransitionmetal-mediatedactivationandfunctionalizationofC-Hbondsiscurrentlyaverychallengingresearcharea.82Cobalt-porphyrin-catalyzedC-HbondaminationshavebeenwidelyinvestigatedbyCenini.83In1999,theaminationofanallylicC-Hbondwasdescribed84a(Scheme73).However,onlymoderateyieldsareobtainedandthescopeofthereactionislimitedtocyclohexene.

ThereactionhasthenbeenextendedtobenzylicC-Hbonds.84b,cAccordingtothenatureofthesubstrate,anamineoraniminecanbeobtainedinmoderateyields(Scheme74andTable37).

9.4.Three-ComponentReactions

Multicomponentreactionshaveemergedasausefulsynthetictoolinthepastdecade.84Asillustratedabove,cobaltsaltscanbeemployedascatalyststoachievesuchreactions.

CahiezandMoyeux

Scheme73.Cobalt-CatalyzedAllylicC-HBondAmination

Scheme74.Cobalt-CatalyzedBenzylicC-HBondAmination

Table37.BenzylicC-HAmination(seeScheme74)

Yield(%)

EntrySubstrateCatalysta

AmineImine1Toluene

A252IsopropylbenzeneA533CyclohexylbenzeneB284EthylbenzeneA25195DiphenylmethaneB55

116

Fluorene

C

41

a

CoIIporphyrinA:RC:R)H.

2)H,R3)p-Cl-C6H4;B:R2)H,R3)Ph;2)Et,R39.4.1.Synthesisof󰀁-AcetamidoKetones

In1994,Iqbal85describedathreecomponentreactionbetweenaketone,analdehyde,andacetonitrile.Various󰀁-acetamidoketoneswerepreparedinmoderatetogoodyields(Scheme75).

Similarly,thereactionbetweena1,3-dicarbonylcom-pound,analdehyde,andacetonitrile86affords󰀁-acetami-dodiketonesinmoderatetogoodyields(Scheme76).

ItshouldbenotedthataromaticaldehydesleadtoacetamidodiketoneswhenthereactionisperformedunderaninertatmospherewhereastheKnoevenageladductisformedinthepresenceofatmosphericoxygen(Scheme77).Ontheotherhand,aliphaticaldehydesbehavedifferently,sincetheacetamidodiketonesareobtainedonlyinthepresenceofatmosphericoxygen.Acomplexmixtureofproductsisformedwhenthereactiontakesplaceunderaninertatmosphere(Scheme77).

Cobalt-CatalyzedCross-CouplingReactions

Scheme75.Synthesisof󰀁-AcetamidoKetonesviaaCobalt-CatalyzedThree-ComponentReaction

Scheme76.Synthesisof󰀁-AcetamidoDiketonesviaaCobalt-CatalyzedThree-ComponentReaction

Scheme77.Cobalt-CatalyzedReactionbetween

1,3-DicarbonylCompounds,Aldehydes,andAcetonitrile:InfluenceofthePresenceofOxygenontheCourseoftheReaction

Thismethodologyhasbeenappliedtothesynthesisoffuransandγ-lactams(Scheme78).

9.4.2.SynthesisofHomoallylsilanes

In2003,Oshima87describedacobalt-catalyzedthree-componentreactionbetweenanalkylhalide,a1,3-diene,andtrimethylsilylmethylmagnesiumchloride.Varioushomoal-lylsilaneshavebeensynthesizedingoodtoexcellentyieldsfromprimary,secondary,ortertiaryalkylhalides(Scheme79).

Thefollowingcatalyticcyclewasproposed(Scheme80).

ChemicalReviews,2010,Vol.110,No.31457

Scheme78.SynthesisofFuransandγ-LactamsviaaCobalt-CatalyzedThree-ComponentReaction

Scheme79.SynthesisofHomoallylsilanesviaaCobalt-CatalyzedThree-ComponentReaction

Scheme80.TentativeMechanismfortheFormationofHomoallylsilanesviaaCobalt-CatalyzedThree-ComponentReaction

Atfirst,Me3SiCH2MgClreducescobalt(II)chlorideintoanactiveCo0species[A].ThisonereactswiththealkylhalideviaasingleelectronItransfertoformthecorrespondingalkylradicalandtheCocomplex[B].Afterward,thealkylradicaladdstothedienetogiveanewradical,whichcombineswith[B]toformtheCoIIcomplex[C].Me3SiCH2MgClthenreactswith[C]toaffordthediorga-nocobalt[D],whichundergoesareductiveelimination,leadingtothehomosilane[E]andtothecomplex[A].

9.5.CouplingofAlkenesandAlkynes

Copper-mediatedreactionshavebeenextensivelyusedforthepreparationofconjugateddiynes.88TheGlaser90andEglingtonproceduresforthehomocouplingofterminalalkynes,ortheCadiot-Chodkiewicz91procedureforthe

1458ChemicalReviews,2010,Vol.110,No.3

Scheme81.Cobalt-CatalyzedDimerizationofTerminalAlkynes

Scheme82.Cobalt-CatalyzedReductiveDimerizationofActivatedAlkenes

couplingofaterminalalkynewitha1-halo-1-alkyne,areprobablythemostpopularcouplingreactionsforthesynthesisof1,3-diynes.Acobalt-catalyzedreactioncanalsobeusedtopreparediynes.92Thus,in2001,Krafft93reportedthecobalt-catalyzeddimerizationofterminalalkynesinexcellentyields(Scheme81).Itisnoteworthythat,inthecaseofconjugatedenynes,notraceofthePauson-Khand94productisdetected.

Thecobalt-catalyzedreductivedimerization95ofconjugatedalkeneswasdescribedbyChengin2004.Excellentresultsareobtainedfromvariousactivatedalkenesorstyrenes(Scheme82).Itshouldbenotedthatsuchreactionshavebeenpreviouslyperformedinthepresenceofstoichiometric96orcatalytic97amountsofcobaltsalts,buttheyieldsareverypoor.

Thesamemethodologycanbesuccessfullyappliedtothereductivecouplingofinternalalkyneswithconjugatedalkenes.98Interestingly,thereactioncanbehighlyregio-andstereoselective.Thus,onlyoneproductisobtainedfromconjugatedacetylenicestersandphenylacetylenederivatives(Scheme83).

Nonactivatedterminalolefinswerealsoused.99Asarule,goodyieldsandsatisfactorystereoselectivitiescanbeobtainedundermildconditions(Scheme84).

Veryrecently,Cheng100extendedthereactiontotheintramolecularreductivecouplingofactivatedalkeneswithalkynes(Scheme85).Thisreactionallowsthesynthesisof

CahiezandMoyeux

Scheme83.Cobalt-CatalyzedReductiveCouplingofInternalAlkyneswithConjugatedAlkenes

Scheme84.Cobalt-CatalyzedAlder-EneReaction

Scheme85.Cobalt-CatalyzedIntramolecularReductiveCouplingofActivatedAlkenesandAlkynes

variousexomethylenecyclopentanederivativesingoodtoexcellentyields.

Itisnoteworthythatitispossibletoperformacobalt-catalyzedintramolecularreductivecoupling/lactonizationofacrylateswithpropargylalcohols(Scheme86).

Whenpropargylaminederivativesareused,thereactionleadstotheformationofsix-memberedcycliclactams(Scheme87).

9.6.VariousReactions

In2005,Oshima101reportedthesyn-hydrophosphinationofalkynesundercobaltcatalysis.Itshouldbenotedthatlanthanide-,102palladium-,ornickel-catalyzed103reactions

Cobalt-CatalyzedCross-CouplingReactions

Scheme86.Cobalt-CatalyzedIntramolecularReductive

Coupling/LactonizationofAcrylateswithPropargylAlcohols

Scheme87.Cobalt-CatalyzedIntramolecularReductiveCoupling/LactonizationofAcrylateswithPropargylAminesDerivatives

Table38.Cobalt-Catalyzedsyn-HydrophosphinationofAlkynes

EntryRR1Yield(%)

35/361pentMe8266/342Ph

Me7482/183o-anisylMe4180/204t-BuH81100/05PhH70/116

Et3Si

H

62

94/6

havealsobeendescribed.However,thestereoselectivityofthesereactionsishighlydependentonthenatureofthesubstrate.Onthecontrary,thecobalt-catalyzedreactionmainlyleadstothesyn-additionproduct35(Table38).Thisreactionisofparticularinterest,sincetheresultingalkenylphosphinecanbeusedforperformingWittigreactions(Scheme88).

Thesameyear,Oshima104reportedthepreparationof1,2-di-and1,1,2-trisilylethylenesviaacobalt-mediatedreactionofdibromomethylsilaneswithtrialkylsilylmethylmagnesiumreagents.Disilylethylenesareusuallysynthesizedbyhy-drosilylationofsilylacetylenes105ordisilylationofacety-lenes.106Contrarytothesereactions,thecobalt-mediatedprocedureishighlyregioselectiveandstereoselective(Scheme).

In2006,Cheng107reportedthecobalt-mediatedsynthesisofthioethersfromthiolsandarylhalides(Scheme90).Thiscouplingmethodisadvantageouscomparedtocopper-,palladium-,andnickel-mediatedreactions,108sincemild

ChemicalReviews,2010,Vol.110,No.31459

Scheme88.Cobalt-Catalyzedsyn-HydrophosphinationofAlkynes:ApplicationtotheWittigReaction

Scheme.Cobalt-CatalyzedSynthesisof1,2-Di-and1,1,2-Trisilylethylenes

Scheme90.SynthesisofThioethersviaCobalt-CatalyzedC-SCouplingReaction

reactionconditionsandlowcatalystloadingarenecessary.Moreover,theuseofsophisticatedphosphineligandisavoided.

Undertheseconditions,ethyl2-iodoacrylatecanalsobecoupledsuccessfully(Scheme91).

10.Conclusion

Sustainabledevelopmentpromptedorganicchemiststolookformoreecocompatibleandmoreeconomicaltransitionmetal-catalyzedprocedures.Thus,inthelasttenyears,agrowingnumberofiron-ormanganese-catalyzedreactions

1460ChemicalReviews,2010,Vol.110,No.3

Scheme91.Cobalt-CatalyzedCross-couplingbetweenThiophenoland2-IodoethylAcrylate

wereproposedtoreplacetheolderpalladiumandnickel-catalyzedcross-couplingprocedures.Ofcourse,intheframeworkofsustainabledevelopment,cobaltislessinter-estingthanironormanganese;however,itcomparesfavorablytonickelandpalladium.Thus,cobaltcanbeaninterestingalternativewhenironormanganesecannotbeused.Ontheotherhand,itshouldbeunderlinedthatseveralreactionsperformedundercobaltcatalysisarespecifictothismetal.Forinstance,iron-catalyzedcrosscouplingbetweenarylGrignardreagentsandfunctionalizedsecondaryalkylbromidesgenerallyfailedwhereasexcellentyieldsareobtainedundercobaltcatalysis.Thus,inthefuture,itshouldbepossibletodevelopmoredistinctreactionsusingcobalt-basedcatalyticsystems.

Inspiteofthenumerousinterestingreportsmentionedinthisreview,cobalt-catalyzedreactionsarestillintheirinfancy.Inthefuture,theyshouldbemoreextensivelydevelopedandcouldtakeasignificantplaceintherenewaloftransitionmetal-catalyzedreactions.

11.Acknowledgments

WethanktheCNRSforfinancialsupport.Ge´rardCahiezthankscurrentandformermembersofhislaboratoryfortheircontributiontothedevelopmentofcobalt-catalyzedcouplingreactions.Theirnamesappearinthelistofreferences.WealsothankJulienBuendiaandDr.OlivierGagerforproofreading.

12.References

(1)Kharasch,M.S.;Fuchs,C.F.J.Am.Chem.Soc.1941,63,2316.(2)Forreviews,see:(a)Yorimitsu,H.;Oshima,K.PureAppl.Chem.

2006,78,441.(b)Shinokubo,H.;Oshima,K.Eur.J.Org.Chem.2004,2081.(c)Iqbal,J.;Mukhopadhyay,M.;Mandal,A.K.Synlett1997,876.(d)Hess,W.;Treutwein,J.;Hilt,G.Synthesis2008,3537.(e)Omae,I.Appl.Organomet.Chem.2007,21,318.(f)Gosmini,C.;Begouin,J.-M.;Moncomble,A.Chem.Commun.2008,28,3221.(3)(a)Khand,I.U.;Knox,G.R.;Pauson,P.L.;Watts,W.E.;Foreman,

M.I.J.Chem.Soc.PerkinTrans.I1973,977.(b)Pauson,P.L.Tetrahedron1985,41,5855.(c)Khand,I.U.;Pauson,P.L.J.Chem.Soc.,Chem.Commun.1974,379.Forareview,see:(d)Struebing,D.;Beller,M.Top.Organomet.Chem.2006,18,165.

(4)(a)Pino,P.;Piacenti,F.;Bianchi,M.InOrganicSynthesisViaMetal

Carbonyls;Wender,I.,Pino,P.,Eds.;Wiley:NewYork,1977;Vol.2,Chapter2.(b)Pruett,R.L.InAdVancesinOrganometallicChemistry;Stone,F.G.A.,West,R.,Eds.;AcademicPress:NewYork,1979;Vol.17,p1.(c)Paulik,F.E.Catal.ReV.1972,6,49.(d)Orchin,M.;Replius,W.Catal.ReV.1972,6,85.(e)Heck,R.F.;Breslow,D.S.J.Am.Chem.Soc.1961,83,4023.(f)Mirback,M.F.J.Organomet.Chem.1984,265,205.(g)Klinger,R.J.;Rathke,J.W.J.Am.Chem.Soc.1994,116,4772.(h)Ojima,I.;Tsai,C.-Y.;Tzamarioudaki,M.;Bonafoux,D.Org.React.2000,56,1.(i)Wiese,K.-D.;Obst,D.Top.Organomet.Chem.2006,18,1.

(5)Leadingreferences:(a)Zhu,S.;Ruppel,J.V.;Lu,H.;Wojtas,L.;

Zhang,X.P.J.Am.Chem.Soc.2008,130,5042.(b)Penoni,A.;Wanke,R.;Tollari,S.;Gallo,E.;Musella,D.;Ragaini,F.;Demartin,F.;Cenini,S.Eur.J.Inorg.Chem.2003,1452.(c)Ikeno,T.;Iwakura,I.;Yabushita,S.;Yamada,T.Org.Lett.2002,4,517.(d)Uchida,T.;Saha,B.;Katsuki,T.TetrahedronLett.2001,42,2521.(e)Kanai,H.;Matsuda,H.J.Mol.Catal.1985,29,157.(f)Nakamura,A.;Konishi,A.;Tatsuno,Y.;Otsuka,S.J.Am.Chem.Soc.1978,100,3443.(g)Fantauzzi,S.;Gallo,E.;Rose,E.;Raoul,N.;Caselli,A.;Issa,S.;Ragaini,F.;Cenini,S.Organometallics2008,27,6143,andreferencescitedtherein.

CahiezandMoyeux

(6)(a)Vollhardt,K.P.C.Angew.Chem.,Int.Ed.1984,23,539.(b)

Grotjahn,D.B.;Vollhardt,K.P.C.J.Am.Chem.Soc.1986,108,2091.(c)Butenschon,H.;Winkler,M.;Vollhardt,K.P.C.Chem.Commun.1986,388.(d)Johnson,E.P.;Vollhardt,K.P.C.J.Am.Chem.Soc.1991,113,381.Forreviews,see:(e)Wu,M.S.;Shanmugansundaram,M.;Cheng,C.-H.Chem.Commun.2003,718.(f)Aubert,C.;Buisine,O.;Petit,M.;Slowinski,F.;Malacria,M.PureAppl.Chem.1999,71,1463.(g)Bona˜ga,L.V.R.;Zhang,H.-C.;Moretto,A.F.;Ye,H.;Gauthier,D.A.;Li,J.;Leo,G.C.;Maryanoff,B.E.J.Am.Chem.Soc.2005,127,3473.(h)Agenet,N.;Gandon,V.;Vollhardt,K.P.C.;Malacria,M.;Aubertand,C.J.Am.Chem.Soc.2007,129,8860.(i)Scheuermannne´eTaylor,C.J.;Ward,B.D.NewJ.Chem.2008,32,1850.Forarecentcommunication,see:(j)Geny,A.;Agenet,N.;Iannazzo,L.;Malacria,M.;Aubert,C.;Gandon,V.Angew.Chem.,Int.Ed.2009,48,1810,andreferencescitedtherein.

(7)Chen,K.C.;Rayabarapu,D.K.;Wang,C.C.;Cheng,C.-H.J.Org.

Chem.2001,66,8804,andreferencescitedtherein.

(8)Gilman,H.;Lichtenwalter,M.J.Am.Chem.Soc.1939,61,957.(9)(a)Morizur,J.P.;Pallaud,R.C.R.Acad.Sci.Paris1962,2,1093.

(b)Morizur,J.P.Bull.Soc.Chim.Fr.19,1331.

(10)Kharasch,M.S.;Fuchs,C.F.J.Am.Chem.Soc.1943,65,504.(11)(a)Uemura,S.;Fukuzawa,S.-I.TetrahedronLett.1982,23,1181.

(b)Uemura,S.;Fukuzawa,S.-I.;Path,S.R.J.Organomet.Chem.1983,243,9.

(12)(a)Cahiez,G.;Avedissian,H.TetrahedronLett.1998,39,6159.

ThebeneficialinfluenceofNMPoniron-catalyzedalkenylationreactionswasalsodescribed:(b)Cahiez,G.;Marquais,S.Tetrahe-dronLett.1996,37,1773.(c)Cahiez,G.;Marquais,S.PureAppl.Chem.1996,68,53.(d)Cahiez,G.;Avedissian,H.Synthesis1998,1199.NMPhasalsoafavorableeffectontheCu-catalyzedalkylationoforganomagnesiumandorganomanganesehalides.(e)Cahiez,G.;Marquais,S.Synlett1993,45.Seealsoref.12c(13)Shirakawa,E.;Imazaki,Y.;Hayashi,T.Chem.Lett.2008,37,6.(14)Amatore,M.;Gosmini,C.;Pe´richon,J.Eur.J.Org.Chem.2005,

9.

(15)Buriez,O.;Ne´de´lec,J.-Y.;Pe´richon,J.J.Electroanal.Chem.2001,

506,162.

(16)(a)Korn,T.J.;Cahiez,G.;Knochel,P.Synlett2003,12,12.(b)

Ohmiya,H.;Yorimitu,H.;Oshima,K.Chem.Lett.2004,33,1240.(17)Hatakeyama,T.;Hashimoto,S.;Ishizuka,K.;Nakamura,M.J.Am.

Chem.Soc.2009,131,11949.

(18)Korn,T.J.;Knochel,P.Angew.Chem.,Int.Ed.2005,44,2947.(19)4-Fluorostyrenehasalreadybeenusedasanadditivetoperformcross-couplingreactions:Jensen,A.E.;Knochel,P.J.Org.Chem.1988,53,2390.Seealso:Johnson,J.B.;Rovis,T.Angew.Chem.,Int.Ed.2008,47,840.

(20)(a)Korn,T.;Schade,M.;Schade,S.;Knochel,P.Org.Lett.2006,

8,725.(b)Korn,T.J.;Schade,M.A.;Cheemala,M.N.;Wirth,S.;Guevara,S.A.;Cahiez,G.;Knochel,P.Synthesis2006,37.(21)Fortheuseofarylfluorides,see:(a)Cahiez,G.;Lepifre,F.;

Ramiandrasoa,P.Synthesis1999,2138.(b)Dankwardt,J.W.J.J.Organomet.Chem.2005,690,932,andreferencescitedtherein.(c)Bahmanyar,S.;Borer,B.C.;Kim,Y.M.;Kurtz,D.M.;Yu,S.Org.Lett.2005,7,1011.(d)Saeki,T.;Takashima,Y.;Tamao,K.Synlett2005,1771.(e)Ackermann,L.;Born,R.;Spatz,J.H.;Meyer,D.Angew.Chem.,Int.Ed.2005,44,7216.

(22)Fortheuseofaryltosylates,see:(a)Terao,J.;Watanabe,H.;Ikumi,

A.;Kuniyasu,H.;Kambe,N.J.Am.Chem.Soc.2002,124,4222.(b)Netherton,M.R.;Fu,G.C.Angew.Chem.,Int.Ed.2002,41,3910.(c)Huang,X.;Anderson,K.W.;Zim,D.;Jiang,L.;Klapars,A.;Buchwald,S.L.J.Am.Chem.Soc.2003,125,6653.(d)Tang,Z.-Y.;Hu,Q.-S.J.Am.Chem.Soc.2004,126,3058,andreferencescitedtherein.(e)Limmert,M.E.;Roy,A.H.;Hartwig,J.F.J.Org.Chem.2005,70,93,andreferencescitedtherein.

(23)(a)Amatore,M.;Gosmini,C.Angew.Chem.,Int.Ed.2008,47,20.

Veryrecently,Gosminialsodescribedtheformationofsymmetricalbiarylsundersimilarconditions.See:(b)Moncomble,A.;LeFloch,P.;Gosmini,C.Chem.sEur.J.2009,15,4770.

(24)Kharasch,M.S.;Fuchs,C.F.J.Am.Chem.Soc.1945,10,292.(25)Cahiez,G.;Avedisssian,H.Unpublishedresults.(26)Avedissian,H.;Be´rillon,L.;Cahiez,G.;Knochel,P.Tetrahedron

Lett.1998,39,6163.

(27)Kamachi,T.;Kuno,A.;Matsuno,C.;Okamoto,S.TetrahedronLett.

2004,45,4677.

(28)Affo,W.;Ohmiya,H.;Fujioka,T.;Ikeda,Y.;Nakamura,T.;

Yorimitsu,H.;Oshima,K.;Inamura,Y.;Mizuta,T.;Miyoshi,K.J.Am.Chem.Soc.2006,128,8068.

(29)Tsuji,T.;Yorimitsu,H.;Oshima,K.J.Am.Chem.Soc.2006,128,

1886.

(30)Ohmiya,H.;Yorimitsu,H.;Oshima,K.Org.Lett.2006,8,3093.(31)Davies,D.I.;Done,J.N.;Hey,D.H.J.Chem.Soc.C1969,2019.

Cobalt-CatalyzedCross-CouplingReactions

(32)Wakabayashi,K.;Yorimitsu,H.;Oshima,K.J.Am.Chem.Soc.2001,

123,5374.

(33)Someya,H.;Kondoh,A.;Sato,A.;Ohmiya,H.;Yorimitsu,H.;

Oshima,K.Synlett2006,18,3061.

(34)(a)Tamao,K.;Nakajima,T.;Kumada,M.Organometallics1984,

3,1655.(b)Fleming,I.;Henning,R.;Plaut,H.J.Chem.Soc.,Chem.Commun.1984,29.

(35)Ohmiya,H.;Wakabayashi,K.;Yorimitsu,H.;Oshima,K.Tetrahe-dron2006,62,2207.

(36)Kobayashi,Y.;Nakata,K.;Ainai,T.Org.Lett.2005,7,183.

(37)Cahiez,G.;Chaboche,C.;Duplais,C.;Moyeux,A.Org.Lett.2009,

11,277.

(38)Hamaguchi,H.;Uemura,M.;Yasui,H.;Yorimitsu,H.;Oshima,K.

Chem.Lett.2008,37,1178.(39)Gomes,P.;Gosmini,C.;Pe´richon,J.Org.Lett.2003,5,1043.(40)(a)Durandetti,M.;Ne´de´lec,J.-Y.;Pe´richon,J.J.Org.Chem.1996,

61,1748.(b)Gomes,P.;Gosmini,C.;Pe´richon,J.J.Org.Chem.2003,68,1142.(c)Gomes,P.;Gosmini,C.;Pe´richon,J.Fr.Pat.Appl.01/08808,July3,2001.

(41)(a)Mizutani,K.;Yorimitsu,H.;Oshima,K.Chem.Lett.2004,33,

832.(b)Yasui,H.;Mizutani,K.;Yorimitsu,H.;Oshima,K.Tetrahedron2006,62,1410.

(42)Kharasch,M.S.;Lambert,F.L.;Urry,W.H.J.Org.Chem.1945,

10,298.

(43)Schlubach,H.H.;Franzen,V.I.LiebigsAnn.Chem.1951,572,116.(44)Black,H.K.;Horn,D.H.S.;Weedon,B.C.L.J.Chem.Soc.C

19,1704.

(45)Kuno,A.;Saino,N.;Kamachi,T.;Okamoto,S.TetrahedronLett.

2006,47,2591.

(46)Someya,H.;Ohmiya,H.;Yorimitsu,H.;Oshima,K.Org.Lett.2007,

9,1565.

(47)Shirakawa,E.;Sato,T.;Imazaki,Y.;Kimura,T.;Hayashi,T.Chem.

Commun.2007,4513.

(48)Reddy,C.K.;Knochel,P.Angew.Chem.,Int.Ed.1996,35,1700.(49)(a)Tsuji,T.;Yorimitsu,H.;Oshima,K.Angew.Chem.,Int.Ed.2002,

41,21.(b)Ohmiya,H.;Tsuji,T.;Yorimitsu,H.;Oshima,K.Chem.sEur.J.2004,10,50.

(50)Cahiez,G.;Chaboche,C.;Giulliani,A.;Duplais,C.;Moyeux,A.

AdV.Synth.Catal.2008,350,1484.

(51)Kharasch,M.S.;Morrison,R.;Urry,W.H.J.Am.Chem.Soc.1944,

66,368.

(52)(a)Kazmierski,I.;Bastienne,M.;Gosmini,C.;Paris,J.-M.;Pe´richon,

J.J.Org.Chem.2004,69,936.AsimilarreactionhasbeenpreviouslyreportedfromarylzinchalidespreparedViaanelectrochemicalprocedure.(b)Fillon,H.;Gosmini,C.;Pe´richon,J.Tetrahedron2003,59,8199.

(53)Forageneralreviewoftransitionmetal-promotedfree-radical

reactionsinorganicsynthesis,see:Iqbal,J.;Bhatia,B.;Nayyar,N.K.Chem.ReV.1994,94,519.

()Forreviewsoncobalt-mediatedradicalreactionsinorganicsynthesis,

see:(a)Bhandal,H.;Patel,V.F.;Pattenden,G.;Russel,J.J.J.Chem.Soc.,PerkinTrans.I1990,2691.(b)Pattenden,G.Chem.Soc.ReV.1988,17,361.

(55)Tiecco,M.Chem.Commun.1965,555.

(56)(a)Okabe,M.;Abe,M.;Tada,M.J.Org.Chem.1982,47,1775.

(b)Okabe,M.;Tada,M.J.Org.Chem.1982,47,5382.(57)Last,K.;Hoffmann,H.M.R.Synthesis19,901.

(58)(a)Ladlow,M.;Pattenden,G.TetrahedronLett.1984,25,4317.(b)

Bhandhal,H.;Pattenden,G.;Russel,J.J.TetrahedronLett.1986,27,2299.(c)Begley,M.J.;Ladlow,M.;Pattenden,G.J.Chem.Soc.,PerkinTrans.I1988,1095.

(59)ForareviewontheuseofVitaminBAngew.Chem.,Int.Ed.1976,12asacatalyst,see:Schrauzer,

G.N.15,417.

(60)Clark,A.J.;Jones,K.TetrahedronLett.19,30,19.(61)Giese,B.;Erdmann,P.;Go¨bel,T.;Springer,R.TetrahedronLett.

19,30,19.

(62)(a)Clark,A.J.;Davies,D.I.;Jones,K.J.;Millbanks,C.J.Chem.

Soc.,Chem.Commun.1994,41.AsingleexampleofasimilarreactionhasbeendescribedbyKnochel:(b)Kneisel,F.F.;Monguchi,Y.;Knapp,K.M.;Zipse,H.;Knochel,P.TetrahedronLett.2002,43,4875.

(63)Fujioka,T.;Nakamura,T.;Yorimitsu,H.;Oshima,K.Org.Lett.2002,

4,2257.

()(a)Chang,K.-J.;Rayabarapu,D.K.;Cheng,C.-H.Org.Lett.2003,

5,3963.(b)Chang,K.-J.;Rayabarapu,D.K.;Cheng,C.-H.J.Org.Chem.2004,69,4781.

(65)(a)Quan,L.G.;Gevorgyan,V.;Yamamoto,Y.J.Am.Chem.Soc.

1999,121,35.(b)Quan,L.G.;Gevorgyan,V.;Yamamoto,Y.J.Am.Chem.Soc.1999,121,9485.(c)Quan,L.G.;Gevorgyan,V.;Yamamoto,Y.J.TetrahedronLett.1999,40,40.

(66)(a)Rayabarapu,D.K.;Cheng,C.-H.Chem.Commun.2002,942.

(b)Rayabarapu,D.K.;Yang,C.-H.;Cheng,C.-H.J.Org.Chem.2003,68,6726.

ChemicalReviews,2010,Vol.110,No.31461

(67)Liu,C.-C.;Korivi,R.P.;Cheng,C.-C.Chem.sEur.J.2008,14,

9503.

(68)(a)Mizorocki,T.;Mori,K.;Ozaki,A.Bull.Chem.Soc.Jpn.1971,

44,581.(b)Heck,R.F.;Nolley,J.P.,Jr.J.Org.Chem.1972,37,2320.

(69)Forreviewssee:(a)Bra¨se,S.;DeMeijere,A.InMetalCatalyzed

Cross-CouplingReactions;Diederich,F.,Stang,P.J.,Eds.;Wiley-VCH:Weinheim,1998;Chapter3.(b)Link,J.T.;Overman,L.E.InMetalCatalyzedCross-CouplingReactions;Diederich,F.,Stang,P.J.,Eds.;Wiley-VCH:Weinheim,1998;Chapter6.(c)Bra¨se,S.;DeMeijere,A.InMetalCatalyzedCross-CouplingReactions,2nded.;Diederich,F.,Stang,P.J.,Eds.;Wiley-VCH:Weinheim,2004;Chapter5.(d)Heck,R.F.Org.React.1982,27,345.(e)Beletskaya,I.P.;Cheprakov,A.V.Chem.ReV.2000,100,3009.(f)Crips,G.T.Chem.Soc.ReV.1998,27,427.(g)deMeijere,A.;Meyer,F.E.Angew.Chem.,Int.Ed.1994,33,2379.(h)Cabri,W.;Candiani,I.Acc.Chem.Res.1995,28,2.(i)Beller,M.;Riermeier,T.H.;Stark,G.InTransitionMetalsforOrganicSynthesis;Beller,M.,Bolm,C.,Eds.;Wiley-VCH:Weinheim,1998;Vol.1,Chapter2.13.(j)HandbookofOrganopalladiumChemistryforOrganicSynthesis;Negishi,E.,Ed.;Wiley:NewYork,2002;Vol.1,ChapterIV.2.(70)Branchaud,B.P.;Detlefsen,W.D.TetrahedronLett.1991,32,6273.(71)(a)Ikeda,Y.;Nakamura,T.;Yorimitsu,H.;Oshima,K.J.Am.Chem.

Soc.2002,124,6514.(b)Recently,BaoreportedthataHeck-typereactioncanbeperformedinthepresenceofcobaltnanospheres:Zhou,P.;Li,Y.;Sun,P.;Zhou,J.;Bao,J.Chem.Commun.2007,1418.(72)Ikeda,Y.;Yorimitsu,H.;Shinokubo,H.;Oshima,K.AdV.Synth.

Catal.2004,346,1631.(73)Erdmann,P.;Scha¨fer,J.;Springer,R.;Zeitz,H.-G.;Giese,B.HelV.

Chim.Acta1992,75,638.

(74)End,N.;Macko,L.;Zehnder,M.;Pfaltz,A.Chem.sEur.J.1998,

4,818.

(75)Chen,C.;Zhu,S.-F.;Wu,X.-Y.;Zhou,Q.-L.Tetrahedron:Asym-metry2006,17,2761.

(76)Shukla,P.;Hsu,Y.-C.;Cheng,C.-H.J.Org.Chem.2006,71,655.(77)Amatore,M.;Gosmini,C.;Pe´richon,J.J.Org.Chem.2006,71,6130.(78)(a)Bhatia,B.;Reddy,M.M.;Iqbal,J.TetrahedronLett.1993,34,

6301.(b)Maikap,G.C.;Reddy,M.M.;Mukhopadhyay,M.;Bhatia,B.;Iqbal,J.Tetrahedron1994,50,9145.

(79)(a)Trost,B.M.Tetrahedron1977,33,2615.(b)Trost,B.M.Acc.

Chem.Res.1980,13,385.(c)Heck,R.F.Palladiumreagentsinorganicsynthesis;AcademicPress:London,1985.(d)Godleski,S.A.ComprehensiVeOrganicSynthesis;Trost,B.M.,Ed.;Pergamon:NewYork,1991;Vol.4,p585.

(80)(a)Trost,B.M.;Lautens,M.J.Am.Chem.Soc.1992,104,53.

(b)Trost,B.M.;Lautens,M.J.Am.Chem.Soc.1983,105,3343.(c)Trost,B.M.;Merlic,C.A.J.Am.Chem.Soc.1990,112,9590.(81)Mukhopadhyay,M.;Iqbal,J.TetrahedronLett.1995,36,6761.(82)ForareviewonC-Hactivationbymetalcomplexes,see:Shilov,

A.E.;Shul’pin,G.B.Chem.Rev.1997,97,2879.

(83)(a)Cenini,S.;Tollari,S.;Penoni,A.;Cereda,C.J.Mol.Catal.A

1999,135.(b)Cenini,S.;Gallo,E.;Penoni,A.;Ragaini,F.;Tollari,S.Chem.Commun.2000,2265.(c)Ragaini,F.;Penoni,A.;Gallo,E.;Tollari,S.;LiGotti,C.;Lapadula,M.;Mangioni,E.;Cenini,S.Chem.sEur.J.2003,9,249.

(84)Forreviews,see:(a)Domling,A.;Ugi,I.Angew.Chem.,Int.Ed.

2000,39,3168.(b)Terret,N.K.;Gardner,M.;Gordon,D.W.;Kobylecki,R.J.;Steele,J.Tetrahedron1995,51,8135.(c)Thomson,L.A.;Ellman,J.A.Chem.ReV.1996,96,555.(d)Ellman,J.A.Acc.Chem.Res.1996,29,132.

(85)(a)Bhatia,B.;Reddy,M.M.;Iqbal,J.J.Chem.Soc.,Chem.Commun.

1994,713.(b)Mukhopadhyay,M.;Bhatia,B.;Iqbal,J.TetrahedronLett.1997,38,1083.

(86)(a)Reddy,M.M.;Bhatia,B.;Iqbal,J.TetrahedronLett.1995,36,

4877.(b)NageshwarRao,I.;Prabhakaran,E.N.;Das,S.K.;Iqbal,J.J.Org.Chem.2003,68,4079.(c)Thisreactioncanbeachievedusingapolyaniline-supportedcobaltcatalyst:Prabhakaran,E.N.;Iqbal,J.J.Org.Chem.1999,,3339.

(87)Mizutani,K.;Shinokubo,H.;Oshima,K.Org.Lett.2003,5,3959.(88)(a)Foracomprehensivereviewonalkynyl-alkynylcoupling,see:

Siemsen,P.;Livngston,R.C.;Diederich,F.Angew.Chem.,Int.Ed.2000,39,2632.(b)Forageneralreviewoncouplingreactionsbetweensp-carboncenters,see:Sonogashira,K.InComprehensiVeOrganicSynthesis;Trost,B.M.,Ed.;PergamonPress:NewYork,1991;Vol.3,p551.

()(a)Hay,A.S.J.Org.Chem.1962,27,3320.(b)Nicolaou,K.C.;

Petasis,N.A.;Zipkin,R.E.;Uenishi,J.J.Am.Chem.Soc.1982,104,5555.Forarecentpublication,see,forexample:(c)Hilt,G.;Hengst,C.;Arndt,M.Synthesis2009,395.(90)(a)Berscheid,R.;Vo¨gtle,F.Synthesis1992,58.(b)Nicolaou,K.C.;

Zipkin,R.E.;Petasis,N.A.J.Am.Chem.Soc.1982,104,5558.(c)Nomoto,T.;Fukui,K.;Nakagawa,M.Bull.Chem.Soc.Jpn.1976,49,305.(d)Eglington,G.;Galbraith,A.R.J.Chem.Soc.1959,8.

1462ChemicalReviews,2010,Vol.110,No.3

(91)(a)Ando,T.;Vu,M.H.;Yoshida,S.;Takahashi,N.Agric.Biol.

Chem.1982,46,717.(b)Crombie,L.;Hobbs,A.J.W.;Horsham,M.A.TetrahedronLett.1987,28,4875.(c)Miller,J.A.;Zweifel,G.Synthesis1983,128.

(92)Forareview,see:Jeganmohan,M.;Cheng,C.-C.Chem.sEur.J.

2008,14,10876.

(93)Krafft,M.E.;Hirosawa,C.;Dalal,N.;Ramsey,C.;Stiegman,A.

TetrahedronLett.2001,42,7733.

(94)Dicobaltoctacarbonylisknowntobeanefficientcatalystforthe

Pauson-Khandreaction;forinstance,see:Krafft,M.E.;Bona˜ga,L.V.;Hirosawa,C.J.Org.Chem.2001,66,3004,andreferencescitedtherein.

(95)Wang,C.-C.;Lin,P.-S.;Cheng,C.-H.TetrahedronLett.2004,45,6203.(96)Agne`s,G.;Chiusoli,G.P.;Cometti,G.Chem.Commun.1968,1515.(97)(a)Kanai,H.;Okada,M.Chem.Lett.1975,167.(b)Kanai,H.;Ishii,

K.Bull.Chem.Soc.Jpn.1981,,1015.

(98)Wang,C.-C.;Lin,P.-S.;Cheng,C.-H.J.Am.Chem.Soc.2002,124,9696.(99)Hilt,G.;Treutwein,J.Angew.Chem.,Int.Ed.2007,46,8500.(100)Chang,H.-T.;Jayanth,T.T.;Wang,C.-C.;Cheng,C.-C.J.Am.Chem.

Soc.2007,129,12032.

(101)Ohmiya,H.;Yorimitsu,H.;Oshima,K.Angew.Chem.,Int.Ed.2005,

44,2368.

(102)(a)Douglass,M.R.;Marks,T.J.J.Am.Chem.Soc.2000,122,1824.(b)

Douglass,M.R.;Stern,C.L.;Marks,T.J.J.Am.Chem.Soc.2001,123,10221.(c)Kawaoka,A.M.;Douglass,M.R.;Marks,T.J.Organometallics2003,22,4630.(d)Takaki,K.;Takeda,M.;Koshoji,G.;Shishido,T.;Takehira,K.TetrahedronLett.2001,42,6357.(e)Takaki,K.;Koshoji,G.;Komeyama,K.;Takeda,M.;Shishido,T.;Kitani,A.;Takehira,K.J.Org.Chem.2003,68,65.(f)Takaki,K.;Komeyama,K.;Takehira,K.Tetrahedron2003,59,10381.

(103)Fortheadditionofphosphane-boranetoalkynesunderpalladium

catalysis,see:(a)Mimeau,D.;Gaumont,A.-C.J.Org.Chem.2003,68,7016.Forthetransitionmetal-catalyzedadditionoftertiaryphosphinestoalkynes,see:(b)Arisawa,M.;Yamaguchi,M.J.Am.Chem.Soc.2000,122,2387.

CahiezandMoyeux

(104)Ohmiya,H.;Yorimitsu,H.;Oshima,K.Angew.Chem.,Int.Ed.2005,

44,3488.

(105)(a)Suzuki,T.;Lo,P.Y.J.Organomet.Chem.1990,391,19.(b)

Lukevics,E.;Belyakova,Z.V.;Pomerantseva,M.G.;Voronkov,M.G.J.Organomet.Chem.Libr.1977,5,1.(c)Ojima,I.InTheChemistryofOrganicSiliconCompounds;Patai,S.,Rappoport,Z.,Eds.;Wiley:Chichester,19;p1479.(d)ComprehensiVeHandbookonHydrosilylation;Marciniec,B.,Ed.;Pergamon:Oxford,1992.(e)Hiyama,T.;Kusumoto,T.InComprehensiVeOrganicChemistry;Trost,B.M.,Fleming,I.,Eds.;Pergamon:Oxford,1991;Vol.8,Chapter3.12.(f)Horn,K.A.Chem.ReV.1995,95,1317.

(106)(a)Suginome,M.;Ito,Y.Chem.ReV.2000,100,3221.(b)Hibino,

J.;Nakatsukasa,S.;Fugami,K.;Matsubara,S.;Oshima,K.;Nozaki,H.J.Am.Chem.Soc.1985,107,16.(c)Watanabe,H.;Kobayashi,M.;Saito,M.;Nagai,Y.J.Organomet.Chem.1981,216,149.(107)Wong,Y.-C.;Jayanth,T.T.;Cheng,C.-H.Org.Lett.2006,8,5613.(108)FortheCu-catalyzedcouplingofarylhalideswiththiols,see:(a)

Bates,C.G.;Gujadhur,R.K.;Venkatamaran,D.Org.Lett.2002,4,2803.(b)Kwong,F.Y.;Buchwald,S.L.Org.Lett.2002,4,3517.(c)Wu,Y.-J.;He,H.Synlett2003,17.(d)Bates,C.G.;Saejueng,P.;Doherty,M.Q.;Venkatamaran,D.Org.Lett.2004,6,5005.(e)Deng,W.;Zou,Y.;Wang,Y.-F.;Liu,L.;Guo,Q.-X.Synlett2004,12.ForPd-catalyzedreactions,see:(f)Mispelaere-Canivet,C.;Spindler,J.-F.;Perrio,S.;Beslin,P.Tetrahedron2005,61,5253.(g)Itoh,T.;Mase,T.Org.Lett.2004,6,4587.(h)Ferna`ndezRodriguez,M.A.;Shen,Q.;Hartwig,J.F.J.Am.Chem.Soc.2006,128,2180.(i)Murata,M.;Buchwald,S.L.Tetrahedron2004,60,7397.(j)Schopfer,U.;Schlapbach,A.Tetrahedron2001,57,3069.(k)Li,G.Y.Angew.Chem.,Int.Ed.2001,40,1513.ForNi-catalyzedreactions,see:(l)Cristau,H.J.;Chabaud,B.;Cheˆne,A.;Christol,H.Synthesis1981,2.(m)Millois,C.;Diaz,P.Org.Lett.2000,2,1705.(n)Percec,V.;Bae,J.Y.;Hill,D.H.J.Org.Chem.1995,60,65.(o)Takagi,K.Chem.Lett.1987,2221.

CR9000786

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务