第十二讲 行程问题之相遇与追击
内容概括
我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.在对小学数学的学习中,我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下: (1)速度×时间=路程 可简记为:s = vt (2)路程÷速度=时间 可简记为:t = s÷v (3)路程÷时间=速度 可简记为:v = s÷t 显然,知道其中的两个量就可以求出第三个量. 涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题. 相遇问题:速度和×相遇时间=路程和 S和v和t 追及问题:速度差×追及时间=路程差 S差v差t 对于上面的公式大家已经不陌生了,在下面的学习中我们将和小朋友们一起复习回顾以前的相关知识,而后拓展提高!
相遇问题
【例1】 两地相距400千米,两辆汽车同时从两地相对开出,甲车每小时行40千米,乙车每小时比甲车多行5千米,4小时后两车相遇了吗?
分析:40 +5 = 45(千米),(40 + 45)×4 = 340(千米),340千米 < 400千米 ,因为两车4小时共行340千米,所以4小时后两车没有相遇.
【巩固】甲、乙两地相距480千米.一辆汽车从甲地开往乙地,每小时行52千米, 行驶312千米后遇到从乙地开来的另一辆汽车.如果乙地开来的汽车每小时行42千米,算一算这两辆车是不是同时开出的? 分析:312÷52 = 6(小时),(480—312)÷42 = 4(小时),从甲地开出的汽车行驶6小时,从乙地开出的汽车行驶4小时,所以说,这两辆车不是同时开出的.
1
【例2】 南辕与北辙两位先生对于自己的目的地S城的方向各执一词,于是两人都按照自己的想法驾车分别往南和往北驶去,南辕先生出发2小时后北辙先生才出发,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?
分析:为让孩子们深刻理会S和v和t,教师可先讲解下题热身.【前铺1】大头儿子的家距离学校3000米,小头爸爸从家去学校,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?
分析:大头儿子和小头爸爸的速度和:3000÷50=60(米/分钟),小头爸爸的速度:(60+24)÷2=42(米/分钟),大头儿子的速度:60—42=18(米/分钟).
【前铺2】孙悟空在花果山,猪八戒在高老庄,花果山和高老庄之间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?
分析:建议教师画线段图。我们可以先求出2小时孙悟空和猪八戒走的路程:(200+150)×2=700(千米),又因为还差500米,所以花果山和高老庄之间的距离:700+500=1200(千米)。
教师在讲解此题之前可以先将条件稍稍改变成两人同时出发,那么两人虽然不是相对而行,但是仍合力完成了路程,这样学生就容易得到本题答案,50×2+(50+60)×5=650(千米).
【例3】 夏夏和冬冬同时从两地相向而行,夏夏每分钟行50米,冬冬每分钟行60米,两人在距两地中点50米处相遇,求两地的距离是多少米?
分析:根据题意,我们可以画线段图如右图,从图中可以看出(可让学生先判断相遇点在中点哪一侧,为什么?):
夏夏所行路程=全程一半 – 50米 ;
冬冬所行路程=全程一半 + 50米 ;所以两人相遇时,冬冬比夏夏多走了50×2=100(米),冬冬比夏夏每分钟多走10米,所以两人从出发到相遇共走了10分钟,两地的距离:(60+50)×10=1100(米).
【例4】 甲、乙两列火车同时从东西两镇之间的A地出发向东西两镇反向而行,它们分别到达东西两镇后,再以同样的速度返回,已知甲每小时行60千米,乙每小时行70千米,相遇时甲比乙少行120千米,东西两镇之间的路程是多少千米?
分析:教师注意帮助学生画图分析.从出发到甲、乙两列火车相遇,两列火车共同行驶了2个全程.已知甲比乙少行120千米,甲每小时比乙少行(70—60 =)10千米,120÷10 = 12(小时),说明相遇时,两辆车共同行驶了12小时.那么两辆车共同行驶1个全程需要6小时,东西两镇之间的路程是(60 + 70)×6 = 780(千米)
【例5】 客车和货车同时从甲、乙两站相对开出,客车每小时走80千米,货车每小时走千米,两车相遇后,又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站立即返回,两车再次相遇时,客车比货车多行384千米,甲、乙两站间的路程是多少千米?
分析:384÷(80-)= 24(小时),24÷3 = 8(小时),(80 + )×8 = 1152(千米).
2
【例6】 一辆汽车和一辆摩托车同时从甲、乙两地相对开出,摩托车每小时行千米,汽车每小时行48千米.两车相遇后又以原来的速度继续前进,摩托车到乙地立即返回.汽车到甲地立即返回.两车在距离中点108千米的地方再次相遇,那么甲、乙两地间的路程是多少千米?
分析:在第二次相遇时,甲、乙两车的路程差为:108×2=216 ,从出发到第二次相遇两车共行了:216÷(-48)=36小时,第二次相遇两车共行3个全程,所以两车行一个全程用:36÷3=12小时,甲、乙两地的路程为:(+48)×12=1224(千米).
【例7】 甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离.
分析:画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线)后,可以发现第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离.当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,而这285千米比一个A、B两地间的距离多25千米,可得:95×3-25=285-25=260(千米).
【例8】 兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1. 3米,妹每秒走1. 2米,问他们第十次相遇时,妹还需走多少米才能回到出发点?
分析:兄妹从同一地点背向而行,每相遇一次,两人共同要走一周(30米),两人第十次相遇时,共同走了10周.30÷(1. 3 + 1. 2)= 12(秒),12×10 = 120(秒),1. 2×120 = 144(米),144÷30 = 4(圈)……24(米),30—24 = 6(米).
追击问题
【例9】 小伟和小华从学校到电影院看电影,小伟以每分60米的速度向影院走去,5分后小华以每分80米的速度向影院走去,结果两人同时到达影院.学校到影院的路程是多少米?
分析:小伟先走的路程是:60×5=300(米),小华追上小伟所用的时间(也就是小华从学校到影院所用的时间)是:300÷(80-60)=15(分),学校到影院的路程(也就是小华所走的路程)是:80×15=1200(米).
【例10】 小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?
分析:可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是:50×10÷(75-50)=20(分钟),因此,小张走的距离是:75×20=1500(米). 【例11】 某段路程,以每分钟80米的速度前进,可以提早15分钟到达;如果以每分钟60米的速度
3
前进,就要迟到5分钟。预定几分钟到达?这段路程长多少米?
分析:可以设想,以速度80米/分按预定时间前进,就比这段路多行(80×15)米,即1200米;以速度60米/分,按预定时间前进,就比这段路少行(60×5)米,即300米。以两种不同的速度按预定时间前进,其距离差为(1200+300)米,即1500米,速度差为(80-60)米/分,预定时间可视为追及时间。这样,就可以把问题转化成追及问题来解.(1200+300)÷(80-60)=75分,80×(75-15)=4800米,预定75分钟到达,这段路程长4800米.
【例12】 小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第一次超过正南需要多少分钟?第三次超过正南需要多少分钟?
分析:小新第一次超过正南是比正南多跑了一圈,根据S差v差t,可知小新第一次超过正南需要:800÷(250-210)=20(分钟),第三次超过正南是比正南多跑了三圈,需要800×3÷(250-210)=60分钟.
【例13】 两名运动员在湖的周围环形道上练习长跑。甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?
分析:在封闭的环形道上同向运动属追及问题,反向运动属相遇问题.同地出发,其实追及路程或相隔距离就是环形道一周的长.这道题的解题关键就是先求出环形道一周的长度.
环形道一周的长度:(250-200)×45=2250(米).反向出发的相遇时间:2250÷(250+200)=5(分钟).
附加题目
【附1】 甲、乙两车同时从A、B两地出发相向而行,6小时相遇.相遇后甲车继续行驶4小时到达B地.乙车每小时行30千米,A、B两地相距多少千米?
分析:乙车6小时行驶路程为:30×6=180(千米),甲车每小时行驶路程为:180÷4=45(千米),两地的路程为:(30+45)×6=450(千米).
【附2】甲、乙两车早上6时分别从A、B两地相向出发,到9时两车相距126千米,继续行进到中午12时,两车还相距126千米,问A、B两地路程是多少千米?
分析:两车的速度和为:126×2÷(12-9)=84(千米) ,A、B两地的总路程为:84×3+126=378(千米) . 【附3】小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇?
分析:走同样长的距离,小张花费的时间是小王花费时间的 36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是36÷(3+1)=9(分钟).
4
【附4】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?
分析:如右图可以看出,从爸爸第一次追上到第二次追上,小明走了 8-4=4(千米),而爸爸骑的距离是 4+8=12(千米),这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这
个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了 4+12=16(千米),少骑行24-16=8(千米),摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟,8+8+16=32,这时是8点32分.
习题十二
1. 甲、乙两车分别从相距300千米的A、B两城同时出发,相向而行,已知甲车到达B城需5小时,乙车到达A城需6小时,问:两车出发后多长时间相遇? 分析:300÷(300÷5+300÷6)=30/11(小时).
2.两座大楼相距300米,甲乙二人各从一座大楼门口向相反方向走去,7分钟后两人相距860米.甲每分钟走37米,乙每分走多少米? 分析:(860—300)÷7—37 = 43(米).
3.小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点3千米的地方相遇,求甲、乙两地间的距离.
分析:小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是:6÷(5-4)=6(小时),因此甲、乙两地的距离是:(5+4)×6=(千米).
4. 甲、乙二人从AB两地同时出发相向而行,相遇时距A地48千米,相遇后二人继续前进,分别到达A、B两地后立即返回,在距A地94千米处第二次相遇,A、B两地相距多少千米?
分析: 画图帮助学生分析.甲、乙第二次相遇时共同走完了3个全程,那么甲就走了3个48千米,即144千米,加上94千米,就是两个全程.(48×3 + 94)÷2 = 119(千米).
5.甲、乙二人同时从A地出发到B地去,甲到B地后,立即按原路返回,在距B地32千米处与乙相遇,已知甲每小时行20千米,乙每小时行12千米,求AB两地间的距离?
分析:注意画图帮助学生分析题目.甲、乙二人同时同向行走,到相遇时止,甲走了一个全程多32千米,乙走了差32千米不到一个全程,甲比乙多行了2个32千米,已知甲比乙每小时多行(20—12 = )8千米,说明甲、乙共同行驶(÷8 = )8小时. AB两地间的距离:12×8 + 32 = 128(千米).此题的解答也可用
S差v差t公式来解答.
6. 龟兔赛跑同时出发,全程7000米,乌龟以每分30米的速度爬行,兔子每分钟跑330米.兔子跑了10分钟就停下来睡了200分钟,醒来后立即以原速往前跑.当兔子追上乌龟时,离终点的距离是多少千米? 分析:兔子追乌龟的追及路程差为:30×(10+200)-330×10=3000(米),兔子追上乌龟的追及时间为:3000
5
÷(330-30)=10(分),离终点的距离为:7000-330×(10+10)=400(米).小朋友,你知道谁先到达终点么?
7. 客车和货车同时从A、B两站相对开出,客车每小时走78千米,货车每小时走66千米,两车相遇后,又以原来的速度继续前进,客车到B站后立即返回,货车到A站立即返回,两车再次相遇时,客车比货车多行180千米,A、B两站间的路程是多少千米? 分析:180÷(78-66)= 15(小时),15÷3 = 5(小时),(78 + 66)×5 = 720(千米).
8. 在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?
分析:甲乙的速度和为:400÷40=10(米/秒),甲乙的速度差为:400÷200=2(米/秒),甲的速度为:(10+2)÷2=6(米/秒),乙的速度为:(10-2)÷2=4(米/秒).
课外数学
悖论的产生――第三次数学危机
数学史上的第三次危机,是由17年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度.这次危机是由于在康托的一般集合理论的边缘发现悖论造成的.由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑.
17年,福尔蒂揭示了集合论中的第一个悖论.两年后,康托发现了很相似的悖论.1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念.罗素悖论曾被以多种形式通俗化.其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸.当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:\"理发师是否自己给自己刮脸?\"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则.
罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:\"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地\".于是终结了近12年的刻苦钻研.
6
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务