PublisherItemIde511
DesignofUnequallySpacedArraysforPerformanceImprovement
B.PreethamKumar,SeniorMember,IEEE,andG.R.Branner,Member,IEEE
Abstract—ClassicalantennaarraysynthesistechniquessuchasFourier,Dolph–ChebyshevandTaylorsynthesisefficientlyobtainarraycurrentdistributionsforequallyspacedarraysthatgenerateadesiredfar-fieldradiationpatternfunctionorkeepimportantparameterslikebeamwidthandsidelobelevelwithinprescribedperformancebounds.However,theconceptofoptimizationofthefieldpattern(e.g.,bydecreasingsidelobesorbeamwidth)ofangivenequallyspacedarrayrealizationbyalteringitselementspacingsstillrepresentsachallengingproblemhavingconsiderablepracticaladvantages.Theseincludereductioninsize,weight,andnumberofelementsofthearray.Thispaperdescribesanewapproachtosynthesisofunequallyspacedarraysutilizingasimpleinversionalgorithmtoobtaintheelementspacingsfromprescribedfar-zoneelectricfieldandcurrentdistribution,orcurrentdistributionsfromprescribedfar-zoneelectricfieldandelementspacings.IndexTerms—Antennaarrays.
I.INTRODUCTION
VERthepast60years,thetheoryofuniformlyspacedantennaarrayshasbeenstudiedindepthandiscertainlywelldocumented.Forexample,givenadesiredradiationpat-tern(e.g.,pencil-beam,sectoral,cosecetc.)andthenumberofelements,itispossibletoemploysuchtraditionalsynthesisproceduresasDolph–Chebyshev,Taylor,Fourierinversionornumericaloptimizationtoobtaintherequiredarraycurrentdistributionforauniformlyspacedarray.
TheanalysisofunequallyspacedantennaarraysoriginatedwiththeworkofUnz[1],whodevelopedamatrixformulationtoobtainthecurrentdistributionnecessarytogenerateapre-scribedradiationpatternfromanunequallyspacedlineararray(withprespecifiedgeometry).SubsequenttotheinitialconceptofUnz,recentdesigntechniquesfocusontwocategoriesofnonuniformarrays:arrayswithrandomlyspacedelementsandthinnedarrays,whicharederivedbyselectivelyzeroingsomeelementsofaninitialequallyspacedarray.
Inthefirstcategory,Harrington[2]developedamethodtoreducesidelobelevelsofuniformlyexcited
O
512IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.47,NO.3,MARCH1999
(a)
(b)
Fig.2.(a)Sidelobelevelofpencil-beampatternwithabruptskirt.(b)Beamwidthofpencilbeampatternwithabruptskirt.
andCohen[8],whoutilizedstatisticalthinningofarrayswithquantizedelementweightstoimprovesidelobeperformanceinlargecirculararrays.Theirresultsdemonstratedthepossibilityofobtainingconsiderablesidelobereductionbyacombinationofprobabilisticthinninganddiscreteamplitudequantization.Anotherrecentapproachtothinnedlinearandplanararraydesignistheapplicationofgeneticalgorithmstodesignoptimalspacings[9].
Thispaperpresentsanewmethodforunequallyspacedar-raysynthesis,whichyieldsappropriateelementspacingvaluesforaprescribedarrayfactorinasimple,recursivemanner.Thistechniquestartswithaprescribedarraypatternandsynthesizesunequallyspacedarraysundertheconstraintthatadjacentelementspacingsarelimitedbythespacebroadeningfactor
elementlineararrayis
illustratedinFig.1wherethe
and1.0
KUMARANDBRANNER:DESIGNOFUNEQUALLYSPACEDARRAYSFORPERFORMANCEIMPROVEMENT513
(a)
(b)
Fig.3.(a)Sidelobelevelofpencil-beampatternwithlinearskirt.(b)Beamwithofpencil-beampatternwithlinearskirt.
Anaffirmativeanswertotheaboveassertionisbasedonthefactthatsincedifferentsetsofnonuniformelementspacingsgeneratedifferentradiationpatterns,onesuchpatterncouldprovideimprovementontheequallyspacedarraypattern(e.g.,byprovidinglowerpeaksidelobelevel(PSLL),narrowerbeamwidthorclosermean-squaredfittotheprescribedpatternresponse).Althoughthispossibilityexists,generalnonuniformspacedarraydesignismorechallengingthanuniformlyspaceddesignbasedonseveralconsiderations.
1)Sincetheelementspacingsoccurasexponentialortrigonometricfunctions,elementspacingsynthesisisanonlinearproblemwhereasthearraycurrentsynthesisisalinearproblem.
2)Constraintshavetobeplacedonthesolutionsfortheelementspacings;viz.,theycannotbecomplexnumbersandtheadjacentelementpositionsshouldbe
toreducethearrayelementcount.
Inordertodelineatethesynthesisalgorithm,thedesired
overtheintervalarraypatternisspecifiedas
,thesynthesisproblemis
addressedonlyovertheinterval
uniformly
514IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.47,NO.3,MARCH1999
(a)
(b)
Fig.4.(a)Comparisonofpencil-beampatterns(desiredpatternwithabruptskirt)N=9.(b)Comparisonofpencil-beampatterns(desiredpatternwithabruptskirt)N=19.
spacedpointsovertheobservationrange.Thesecondstepcontainsthekeydevelopmentinthesynthesistechnique,viz.,theLegendretransformationofthearrayfactor.InStep3,thelimitingpropertyoftheLegendrepolynomialsiseffectedandthisleadstothegenerationofatriangularsystemofequations.TheactualdesignequationsforelementspacingvaluesarepresentedinStep4.Thefollowingparagraphspresentthesestepsindetail.
StepI.DefinitionoftheSynthesisProblem
elementnonpe-Theactualarraypattern
riodicsymmetricarrayofpointsources(Fig.1)isgivenby[15]
(1)
where
StepII.LegendreTransformationoftheDesiredArrayPattern
pointsintheinterval
.
Thefollowingstepsdefinetheprocedurefortransformingthearrayfunction
(3)
KUMARANDBRANNER:DESIGNOFUNEQUALLYSPACEDARRAYSFORPERFORMANCEIMPROVEMENT515
(c)
(d)
Fig.4.(Continued.)(c)Comparisonofpencil-beampatterns(desiredpatternwithlinearskirt)N=9.(d)Comparisonofpencil-beampatterns(desiredpatternwithlinearskirt)N=19.
whereistheLegendrefunctionofhalfintegerorder.Therangeandvalues
willbeselectedinaccordancewithof
theelementpositionsaswillbedescribedshortly.Substituting(1)and(2)for
Applyingthepropertyin(5)to(4)permitsthetransformedarrayfunctiontobeexpressedas
(6)
where
ismotivatedbyconsiderationofthefollowinglimitingrelationfortheLegendrepolynomialoffractionalorder[16]:
islarge.Equation(8)yieldsthelimitingcondition
on(5)
516IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.47,NO.3,MARCH1999
(a)(i)
(a)(ii)
Fig.5.(a)(i)Peaksidelobelevelofflat-topbeamwithabruptskirt.(a)(ii)Firstsidelobelevelofflat-topbeamwithabruptskirt.
Asanillustration,iftheadjacentelementspacingsofthearrayarelimitedto
(12)
Thissystemisinvertibleasfollows:
gridistheimportantconstituentinthe
reconstructionofthearraycurrentsandpositionsinrecursiveform.Thisgridisdefinedbythefollowingrelation:
(13)
and
StepIV.ApplicationofInversionAlgorithminStepIIItoSynthesizeCurrentsandPositions
Thealgorithmdescribedin(1)–(13)isutilizedtoyieldthesynthesizedarrayspacingsinthefollowingmanner.
KUMARANDBRANNER:DESIGNOFUNEQUALLYSPACEDARRAYSFORPERFORMANCEIMPROVEMENT517
(b)
Fig.5.(Continued.)(b)Beamwidthofflat-topbeamwithabruptskirt.
TABLEI
SYNTHESISALGORITHM
FLOWCHART
OF
thespacebroadening
factorismaintainedlessthan0.5
inordertoreducemutual
couplingeffectsandintheupperlimit,theadjacentelementspacingislessthan
areselectedasfollows:
(14)
Equation(14)isthefirstdesignequationofthearray.Inordertosynthesizethesecond-elementcurrent/position,isselectedas
(15)
Equation(15)istheseconddesignequationofthearraysincetheleft-handsideoftheequationcontainsboththearraycurrent
thdesignequationofthearrayisobtainedas
1)Thefirstarrayelementispositionedat
518IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.47,NO.3,MARCH1999
(a)(i)
(a)(ii)
Fig.6.(a)(i)Peaksidelobelevelofflat-topbeamwithlinearskirt.(a)(ii)Firstsidelobelevelofflat-topbeamwithlinearskirt.
TheproposedsynthesistechniquecanberepresentedbytheflowchartformasshowninTableI.Theorganizationoftheflowchartfollowstheanalysisgivenaboveasafour-stepprocessoriginatingwiththedesiredarrayfieldpatternandculminatingwiththegenerationofarrayelementpositions.
Theabovedevelopment[(14)–(16)]providesameanstosolvethefollowingdistinctsynthesisproblems.
1)SynthesisofArrayCurrentsofaNonuniformlySpacedArraywithPrescribedElementPositions:Thisproblemisformulatedasfollows.Givenaprescribedsymmetricalpattern
overtheinterval
elementsym-metricarray,obtaintheappropriatesetofcurrents
expressedintheinterval
elementarray,obtain
theappropriatenonuniformsetofelementpositions
KUMARANDBRANNER:DESIGNOFUNEQUALLYSPACEDARRAYSFORPERFORMANCEIMPROVEMENT519
(b)
Fig.6.(Continued.)(b)Beamwidthofflat-topbeamwithlinearskirt.
(16)as
Thedesiredarraypatternfunctioncangenerallybeex-pressedas
(20)
delineatesthemainlobeandsidelobewheretheboundary
regions.
1)SynthesisofPencil-BeamPatternUtilizingUniformCur-rentDistribution:Asalludedtoabove,inthisfirstapplicationthearraycurrentdistributionisuniformandtheinitialarraygeometryconsistsof(19)
.and
Toexcludeinfeasiblesolutions,thefollowingconditionsareplacedonthesevaluesof
(21)
,then
,then
are
,
b)Prescribedpatternwithlinearskirt:
)oftheinitial
equallyspacedarray.
Thesynthesisalgorithm(SectionII)hasbeenappliedinbothcasesa)andb)toobtaintheappropriateadjacentelementspacings.Forcasea)Fig.2(a)describestheresultsobtainedforthevariationoffirstsidelobelevel(FSLL)andpeakside-lobelevel(PSLL)asafunctionofthespacebroadeningfactor
pointsfor.
520IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.47,NO.3,MARCH1999
(a)
(b)
Fig.7.(a)Comparisonofflat-topbeampatterns(desiredpatternwithabruptskirt)N=9.(b)Comparisonofflat-topbeampatterns(desiredpatternwithabruptskirt)N=19.
broadeningfactor:3.185,1.592for
andrespectively.SimilarlyFig.3(a)illustrates
thesidelobecharacteristicsofthesynthesizednonuniformarraysforcaseb)utilizingtheprescribedfunctionin(22).The3-dBbeamwidth[Fig.3(b)]ofthenonuniformarrayremainsunchangedasincasea),withvariationofthespacebroadening
,1.592forfactor:3.185
ofthespacebroadeningfactor
forbothcasesa)andb).
SynthesizedfieldpatternsaredepictedinFig.4(a)–(d)forthetwocasesoftargetfunctionsdefinedin(21)and(22).Ineachfigure,acomparisonismadeamongthespecifiedtarget
,thepatternofthepattern
(inwavelengths)rangesfrom0.1to0.5
6.5dBoverthatofauniformarrayforboth
and,
respectively,correspondingtocaseb).Inthesefigures,itisobservedthatincomparisonwiththeequallyspacedarray,
increases,
thePSLLreachesitslowestvalueforasmallervalue
KUMARANDBRANNER:DESIGNOFUNEQUALLYSPACEDARRAYSFORPERFORMANCEIMPROVEMENT521
(c)
(d)
Fig.7.(Continued.)(c)Comparisonofflat-topbeampatterns(desiredpatternwithlinearskirt)N=9.(d)Comparisonofflat-topbeampatterns(desiredpatternswithlinearskirt)N=19.
thereductionofthePSLLis
pointssources
having
(25)
,Inbothcasesa)andb)
,andthesecondboundary
522IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.47,NO.3,MARCH1999
TABLEII
(a)SYNTHESIZEDELEMENTSPACINGS()PENCIL-BEAMPATTERNWITHABRUPTSKIRT.(b)SYNTHESIZEDELEMENTSPACINGS()PENCIL-BEAMPATTERNWITHLINEARSKIRT
(a)
(b)
positionofthefirstnullinthepatternofthecorrespondingequallyspacedarray.
Fig.5(a)(i)and(a)(ii)describesthevariationofPSLLandFSLL,respectively,ofthesynthesizednonuniformarrayforcasea)asafunctionofthespace-broadeningfactor.Similarly,Fig.6(a)and(b)
illustratesthevariationofthesidelobelevelsandbeamwidth,respectively,forthecaseb).Analysisrevealsthatthepatternsynthesisoftheflat-topbeamishighlysensitivetothespace-broadeningfactorandasaconsequence,hence,therangeof
increasesfrom0–0.14
.
2)The3-dBbeamwidthessentiallyremainsunchangedasafunctionof
,
whereitisobservedthatthePSLLisimprovedoverthatoftheuniformarrayby
and
,respectively.ThePSSLisagainreducedby7dBforand
6.5dBincomparison
withuniformlyexcitedpencil-beamarraysandupto
KUMARANDBRANNER:DESIGNOFUNEQUALLYSPACEDARRAYSFORPERFORMANCEIMPROVEMENT523
forflat-topbeamarrayswhileessentiallymaintainingthesamebeamwidth.Thedesignofunequallyspacedarraysbygenetic
20-dBpeaksidelobelevelforthinnedalgorithms[9]yields
linearandplanararraysoptimizedoverbothscanangleandbandwidthofoperation.Anothercomparisoncanbemadebetweenthecurrentmethodandrecentoptimizationmethods
18.5dB[17],wherethepeaksidelobelevelachievedis
20dBforcurrentcasewitha14-elementarray).A(
primaryadvantageofthemethodpresentedinthispaperisthatitisnoniterativeinnatureand,hence,lesspronetoerrors.Optimizationandgeneticalgorithms,ontheotherhand,areinherentlyiterativetechniques,withtheassociatedpotentialforspeed,convergence,andaccuracyproblems.
Theextensionofthemethodtolowsidelobesymmetricplanararraysisstraightforwardandcanbeconsideredasthetwo-dimensionalcounterpartofthealgorithmdescribedinSectionII.Intheplanarcase,atwo-dimensionalLegendretransformationcanbeeffectedonadesiredarraypattern
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务