您好,欢迎来到年旅网。
搜索
您的当前位置:首页4N35 N36 4N37 4N38

4N35 N36 4N37 4N38

来源:年旅网
4N35/ 4N36/ 4N37/ 4N38

Vishay Semiconductors

Optocoupler, Phototransistor Output, With Base Connection

Features

• • • • • •

Isolation Test Voltage 5300 VRMS

Interfaces with common logic families

Input-output coupling capacitance < 0.5 pFIndustry Standard Dual-in line 6-pin packageLead-free component

Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

i179004ACNC1236B5C4EAgency Approvals

•Underwriters Laboratory File #E52744 •DIN EN 60747-5-2 (VDE0884)DIN EN 60747-5-5 pendingAvailable with Option 1

e3PbPb-freeApplications

AC mains detectionReed relay driving

Switch mode power supply feedbackTelephone ring detectionLogic ground isolation

Logic coupling with high frequency noise rejection

These isolation processes and the Vishay ISO9001quality program results in the highest isolation perfor-mance available for a commecial plastic phototransis-tor optocoupler.

The devices are available in lead formed configura-tion suitable for surface mounting and are availableeither on tape and reel, or in standard tube shippingcontainers.

Note:

Designing with data sheet is cover in Application Note 45

Order Information

Part

4N3N3N374N384N35-X00N35-X0074N35-X0094N36-X0074N36-X0094N37-X00N37-X009

Remarks

CTR > 100 %, DIP-6CTR > 100 %, DIP-6CTR > 100 %, DIP-6CTR > 20 %, DIP-6

CTR > 100 %, DIP-6 400 mil (option 6)CTR > 100 %, SMD-6 (option 7)CTR > 100 %, SMD-6 (option 9)CTR > 100 %, SMD-6 (option 7)CTR > 100 %, SMD-6 (option 9)CTR > 100 %, DIP-6 400 mil (option 6)CTR > 100 %, SMD-6 (option 9)

Description

This data sheet presents five families of Vishay Indus-try Standard Single Channel Phototransistor Cou-plers.These families include the 4N35/ 4N36/ 4N37/4N38 couplers.

Each optocoupler consists of gallium arsenide infra-red LED and a silicon NPN phototransistor.

These couplers are Underwriters Laboratories (UL)listed to comply with a 5300 VRMS isolation test volt-age.

This isolation performance is accomplished throughVishay double molding isolation manufacturing pro-cess. Comliance to DIN EN 60747-5-2(VDE0884)/DIN EN 60747-5-5 pending partial discharge isolationspecification is available for these families by orderingoption 1.

For additional information on the available options refer to Option Information.

Document Number 83717Rev. 1.5, 27-Jan-05

www.vishay.com

1

4N35/ 4N36/ 4N37/ 4N38

Vishay SemiconductorsAbsolute Maximum Ratings

Tamb = 25°C, unless otherwise specified

Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device isnot implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absoluteMaximum Rating for extended periods of the time can adversely affect reliability.

Input

Parameter

Reverse voltageForward currentSurge currentPower dissipation

≤ 10 µs

Test condition

SymbolVRIFIFSMPdiss

Value6.0602.5100

UnitVmAAmW

Output

Parameter

Collector-emitter breakdown voltage

Emitter-base breakdown voltage

Collector current

(t ≤ 1.0 ms)

Power dissipation

Test condition

SymbolVCEOVEBOICICPdiss

Value707.050100150

UnitVVmAmAmW

Coupler

Parameter

Isolation test voltageCreepageClearance

Isolation thickness between emitter and detector

Comparative tracking index per DIN IEC 112/VDE0303,part 1Isolation resistanceStorage temperatureOperating temperatureJunction temperatureSoldering temperature

max. 10 s dip soldering: distance to seating plane ≥ 1.5 mm

VIO = 500 V, Tamb = 25°CVIO = 500 V, Tamb = 100°C

RIORIOTstgTambTjTsld

Test condition

SymbolVISO

Value5300≥ 7.0≥ 7.0≥ 0.417510121011- 55 to + 150- 55 to + 100

100260

ΩΩ°C°C°C°CUnitVRMSmmmmmm

www.vishay.com2

Document Number 83717

Rev. 1.5, 27-Jan-05

4N35/ 4N36/ 4N37/ 4N38

Vishay Semiconductors

Electrical Characteristics

Tamb = 25°C, unless otherwise specified

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineeringevaluation. Typical values are for information only and are not part of the testing requirements.

Input

Parameter

Forward voltage1)Reverse current1)Capacitance

Test condition

IF = 10 mA

IF = 10 mA, Tamb = - 55°CVR = 6.0 VVR = 0, f = 1.0 MHz

SymbolVFVFIRCO

0.9Min

Typ.1.31.30.125

Max1.51.710

UnitVVµApF

1) Indicates JEDEC registered value

Output

Parameter

Collector-emitter breakdown voltage1)

4N3N374N38

Emitter-collector breakdown voltage1)

Collector-base breakdown voltage

1)

Test condition

IC = 1.0 mA

Part4N35

SymbolBVCEOBVCEOBVCEOBVCEOBVECO

Min303030807.070707080

Typ.MaxUnitVVVVVVVVV

IE = 100 µA

IC = 100 µA, IB = 1.0 µA

4N3N3N374N38

BVCBOBVCBOBVCBOBVCBOICEOICEOICEOICEOICEOICEOICEOICEOCCE

Collector-emitter leakage current

1)

VCE = 10 V, IF = 0

4N3N36

5.05.05.0

50505050500500500

nAnAnAnAµAµAµAµApF

VCE = 10 V, IF=0VCE = 60 V, IF = 0VCE = 30 V, IF = 0, Tamb = 100°C

4N374N384N3N3N37

VCE = 60 V, IF = 0, Tamb = 100°C

Collector-emitter capacitance

1)

4N386.06.0

VCE = 0

Indicates JEDEC registered value

Coupler

Parameter

Resistance, input to output1)Capacitance (input-output)

1)

Test condition

VIO = 500 Vf = 1.0 MHz

SymbolRIOCIO

Min1011

Typ.0.5

MaxUnitΩpF

Indicates JEDEC registered value

Document Number 83717Rev. 1.5, 27-Jan-05

www.vishay.com

3

4N35/ 4N36/ 4N37/ 4N38

Vishay SemiconductorsCurrent Transfer Ratio

Parameter

DC Current Transfer Ratio1)

Test condition

VCE = 10 V, IF = 10 mA

Part4N3N3N37

VCE = 10 V, IF = 20 mAVCE = 10 V, IF = 10 mA, TA = - 55 to + 100°C

4N384N3N3N374N38

1)

SymbolCTRDCCTRDCCTRDCCTRDCCTRDCCTRDCCTRDCCTRDC

Min10010010020404040

Typ.MaxUnit%%%%

50505030

%%%%

Indicates JEDEC registered value

Switching Characteristics

ParameterSwitching time1)

1) Indicates JEDEC registered value

Test condition

IC = 2 mA, RL = 100 Ω, VCC = 10 V

Symbolton, toff

MinTyp.10

MaxUnitµs

Typical Characteristics (Tamb = 25 °C unless otherwise specified)

1.41.3VF-ForwardVoltage-VNCTR-NormlizedCTR1.5TA=–55°CTA=25°CNormalizedto:Vce=10V,IF=10mA,TA=25°CCTRce(sat)Vce=0.4V1.21.11.00.90.80.7.1110IF-ForwardCurrent-mA100TA=85°C1.0TA=25°C0.5NCTR(SAT)NCTR0.00i4n25_02110IF-LEDCurrent-mA100i4n25_01Figure1. Forward Voltage vs. Forward Current

Figure2. Normalized Non-Saturated and Saturated CTR vs. LED

Current

www.vishay.com4

Document Number 83717

Rev. 1.5, 27-Jan-05

4N35/ 4N36/ 4N37/ 4N38

Vishay Semiconductors

1.5NCTR-NormalizedCTRIce-CollectorCurrent-mANormalizedto:Vce=10V,IF=10mA,TA=25°CCTRce(sat)Vce=0.4V35302520151050010203040506070°C25°C85°C50°C1.0TA=50°C0.5NCTR(SAT)NCTR0.0.1110IF-LEDCurrent-mA100IF-LEDCurrent-mAi4n25_06i4n25_03Figure3. Normalized Non-saturated and Saturated CTR vs. LED

CurrentFigure6. Collector-Emitter Current vs. Temperature and LED

Current

1.5NCTR-NormalizedCTRIceo-Collector-Emitter-nANormalizedto:Vce=10V,IF=10mA,TA=25°CCTRce(sat)Vce=0.4V10101031.0TA=70°C102101010Vce=10VTypical0.5NCTR(SAT)NCTR10–110–2–200204060801000.0.1110IF-LEDCurrent-mA100TA-AmbientTemperature-°Ci4n25_07i4n25_04Figure4. Normalized Non-saturated and saturated CTR vs. LED

Current

Figure7. Collector-Emitter Leakage Current vs.Temp.

1.5NCTR-NormalizedCTRNCTRcb-NormalizedCTRcbNormalizedto:Vce=10V,IF=10mA,TA=25°CCTRce(sat)Vce=0.4V1.5Normalizedto:Vcb=9.3V,IF=10mA,TA=25°C1.0TA=85°C1.00.5NCTR(SAT)NCTR0.525°C50°C70°C0.0.11101000.0.1110IF-LEDCurrent-mA100IF-LEDCurrent-mAi4n25_08i4n25_05Figure5. Normalized Non-saturated and saturated CTR vs. LED

Current

Figure8. Normalized CTRcb vs. LED Current and Temp.

Document Number 83717Rev. 1.5, 27-Jan-05

www.vishay.com

5

4N35/ 4N36/ 4N37/ 4N38

Vishay Semiconductors

101000tPLH-PropagationDelay-µsNormalizedPhotocurrent1100tPHL2.010.10tPLH1.5Nib,TA=–20°CNib,TA=25°CNib,TA=50°CNib,TA=70°C0.01.1i4n25_09110100i4n25_121.11.0110100IF-LEDCurrent-mARL-CollectorLoadResistor-kΩFigure9. Normalized Photocurrent vs. IF and Temp.

Figure12. Propagation Delay vs. Collector Load Resistor

1.2NHFE-NormalizedHFE70°CIF1.0–20°C0.825°CtDVO0.6Normalizedto:Ib=20µA,Vce=10V,TA=25°CtRtPLHVTH=1.5VtPHL0.4i4n25_10tStF110100Ib-BaseCurrent-µA1000i4n25_13Figure10. Normalized Non-saturated HFE vs. Base Current and

Temperature

Figure13. Switching Timing

NHFE(sat)-NormalizedSaturatedHFE1.5Normalizedto:Vce=10V,Ib=20µATA=25°CF=10KHz,DF=50%VCC=5.0V70°C1.025°C–20°C0.550°CRLVOVce=0.4V0.01101001000i4n25_14IF=10mAi4n25_11Ib-BaseCurrent-µAFigure11. Normalized HFE vs. Base Current and Temp.Figure14. Switching Schematic

www.vishay.com6

Document Number 83717

Rev. 1.5, 27-Jan-05

tPHL-PropagationDelay-µsNormalizedto:IF=10mA,TA=25°CIF=10mA,TA=25°CVCC=5.0V,Vth=1.5V2.N35/ 4N36/ 4N37/ 4N38

Vishay Semiconductors

Package Dimensions in Inches (mm)

For 4N35/36/37/38..... see DIL300-6 Package dimension in the Package Section.

For products with an option designator (e.g. 4N35-X006 or 4N36-X007)..... see DIP-6 Package dimensions in the Package Section.

DIL300-6 Package Dimensions

14770DIP-6 Package Dimensions3.248(6.30).256(6.50)456ISOMethodA21pinoneID.335(8.50).343(8.70).039(1.00)Min.4°typ..018(0.45).022(0.55)i178004.048(0.45).022(0.55).130(3.30).150(3.81).300(7.62)typ.18°.031(0.80)min..031(0.80).035(0.90).100(2.)typ.3°–9°.010(.25)typ..300–.347(7.62–8.81).114(2.90).130(3.0)Document Number 83717Rev. 1.5, 27-Jan-05

www.vishay.com

7

4N35/ 4N36/ 4N37/ 4N38

Vishay Semiconductors

Option6.407(10.36).391(9.96).307(7.8).291(7.4).028(0.7)MIN.Option7.300(7.62)TYP.Option9.375(9.53).395(10.03).300(7.62)ref..180(4.6).160(4.1).0040(.102).315(8.0)MIN..014(0.35).010(0.25).400(10.16).430(10.92).331(8.4)MIN..406(10.3)MAX..0098(.249).020(.51).040(1.02).012(.30)typ..315(8.00)min.15°max.18450www.vishay.com8

Document Number 83717

Rev. 1.5, 27-Jan-05

4N35/ 4N36/ 4N37/ 4N38

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

1.Meet all present and future national and international statutory requirements.

2.Regularly and continuously improve the performance of our products, processes, distribution and

operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

1.Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively2.Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA3.Council Decision 88/0/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design

and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal

damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Document Number 83717Rev. 1.5, 27-Jan-05

www.vishay.com

9

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务