您好,欢迎来到年旅网。
搜索
您的当前位置:首页人教版数学必修二知识点总结

人教版数学必修二知识点总结

来源:年旅网
 第一章 立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:定义:两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱ABCDEABCDE或用对角线的端点字母,如五棱柱AD'。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底

面的截面是与底面全等的多边形。

(2)棱锥:定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥PABCDE 几何特征:侧面、对角面是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比。 (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台PABCDE

几何特征:①上下底面是相似平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点。 (4)圆柱:定义:以矩形一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥顶点;③侧面展开图是一弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段与x轴平行且长度不变;

②原来与y轴平行的线段与y轴平行,长度减为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

'h(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

S直棱柱侧面积ch S圆柱侧2rh S正棱锥侧面积1ch' S圆锥侧面积rl

2'''''''''''''''''S正棱台侧面积S圆柱表1(c1c2)h' S圆台侧面积(rR)l 22rrl S圆锥表rrl S圆台表r2rlRlR2

(3)柱体、锥体、台体的体积公式

1V柱Sh V锥Sh V台1(S'S'SS)h

33

(4)球体的表面积和体积公式:V球=4R3 ; S球面=4R3

2

第二章 空间点、直线、平面的位置关系

1、平面

① 平面的概念: A.描述性说明; B.平面是无限伸展的;

② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);

也可以用两个相对顶点的字母来表示,如平面BC;或用所有字母表示,如平面ABCD。 ③ 点与平面的关系:点A在平面内,记作A;点A不在平面内,记作A 点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作Al;

直线与平面的关系:直线l在平面α内,记作lα;直线l不在平面α内,记作lα。 2、公理1:如果一条直线的两点在一个平面内,那么这条直线在这个平面内。 应用:检验桌面是否平; 判断直线是否在平面内 用符号语言表示公理1:Al,Bl,A,Bl 公理2:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。 公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:PABABl,Pl 公理3的作用: ①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。 ③它可以判断点在直线上,即证若干个点共线的重要依据。 公理4:平行于同一条直线的两条直线互相平行 3、空间直线与直线之间的位置关系

① 异面直线定义:不同在任何一个平面内的两条直线 ② 异面直线性质:既不平行,又不相交。

③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

④ 异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。 注:求异面直线所成角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角

4、等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。 5、空间直线与平面之间的位置关系

直线在平面内——有无数个公共点.

三种位置关系的符号表示:aα a∩α=A a∥α

6、平面与平面之间的位置关系: 平行——没有公共点;α∥β

相交——有一条公共直线,α∩β=b。 7、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

那么这条直线和交线平行。线面平行线线平行

(2)平面与平面平行的判定及其性质 两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。 (线线平行→面面平行),

(3)垂直于同一条直线的两个平面平行。 两个平面平行的性质定理

(1)若两个平面平行,那么某一个平面内的直线与另一个平面平行(面面平行→线面平行) (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行) 8、空间中的垂直问题

(1)定义:①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:若一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。 ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理 ①线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 ②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。 9、空间角问题

(1)线线所成的角:①两平行直线所成的角:规定为0。

②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。 ③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线a,b,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

(2)直线和平面所成的角

①平面的平行线与平面所成的角:规定为0。 ②平面的垂线与平面所成的角:规定为90。 ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角。 求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。 在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线, 在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。 (3)二面角和二面角的平面角

①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。 ②二面角的平面角:以棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线所成的角叫二面角的平面角。 .....③直二面角:平面角是直角的二面角叫直二面角。

二面角是直二面角,那么这两个平面垂直;反之,如果两个平面垂直,那么所成的二面角为直二面角 ④求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

第三章 直线与方程

1、直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

2、直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即ktan。斜率反映直线与轴的倾斜程度。

当0,90时,k0; 当90,180②过两点的直线的斜率公式:k时,k0; 当90时,k不存在。

y2y1(x1x2)

x2x1注意下面四点:(1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与P1、P2的顺序无关;(3)求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 4、直线方程

①点斜式:yy1k(xx1)直线斜率k,且过点x1,y1

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,方程是x=x1。 ②斜截式:ykxb,直线斜率为k,直线在y轴上的截距为b

yy1xx1③两点式:(x1x2,y1y2)直线两点x1,y1,x2,y2 y2y1x2x1④截矩式:

xy1 ab⑤一般式:AxByC0(A,B不全为0)

1各式的适用范围 ○2特殊的方程如: 注意:○

平行于x轴的直线:yb(b为常数); 平行于y轴的直线:xa(a为常数);

5、直线系方程:即具有某一共同性质的直线

(1)平行直线系

平行于已知直线A0xB0yC00(A0,B0是不全为0的常数)的直线系:A0xB0yC0(C为常数)

(2)过定点的直线系

(ⅰ)斜率为k的直线系:(ⅱ)过两条直线l1:yy0kxx0,直线过定点x0,y0;

A1xB1yC1A2xB2yC20(为参数)

A1xB1yC10,l2:A2xB2yC20的交点的直线系方程:

6、两直线平行与垂直

当l1:yk1xb1,l2:yk2xb2时,l1//l2k1k2,b1b2;l1l2k1k21 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

7、两条直线的交点

l1:A1xB1yC10 l2:A2xB2yC20相交 A1xB1yC10交点坐标即方程组的一组解。 A2xB2yC20

方程组无解l1//l2 ; 方程组有无数解l1与l2重合

Bx2,y2)8、两点间距离公式:设A(x1,y1),(是平面直角坐标系中的两个点,则|AB|(x2x1)2(y2y1)2 AxBy0C9、点到直线距离公式:一点Px0,y0到直线l1:AxByC0的距离d0

22AB10、两平行直线距离公式: dc1c2AB22

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务