KPappert,CGould,
PhysikalischesInstitut(EP3),Universit¨atW¨urzburg,AmHubland,D-97074W¨urzburg,Germany
MSawicki,
InstituteofPhysics,PolishAcademyofSciences,al.Lotnik´ow32/46,PL-02668,Warszawa,Poland
JWenisch,KBrunner,GSchmidt,LWMolenkamp
PhysikalischesInstitut(EP3),Universit¨atW¨urzburg,AmHubland,D-97074W¨urzburg,GermanyE-mail:gould@physik.uni-wuerzburg.de
Abstract.
Thispaperdiscussestransportmethodsfortheinvestigationofthe(Ga,Mn)Asmagneticanisotropy.Typicalmagnetoresistancebehaviourfordifferentanisotropytypesisdiscussed,focusingonanindepthdiscussionoftheanisotropyfingerprinttechniqueandextendingittolayerswithprimarilyuniaxialmagneticanisotropy.
Wefindthatinall(Ga,Mn)Asfilmsstudied,threeanisotropycomponentsarealwayspresent;Theprimarybiaxialalong([100]and[010])alongwithbothuniaxialcomponentsalongthe[110]and[010]crystaldirectionwhichareoftenreportedseparately.Variousfingerprintsoftypical(Ga,Mn)Astransportsamplesat4Kareincludedtoillustratethevariationoftherelativestrengthoftheseanisotropyterms.Wefurtherinvestigatethetemperaturedependenceofthemagneticanisotropyandthedomainwallnucleationenergywiththehelpofthefingerprintmethod.
PACSnumbers:75.50.Pp,75.30.Gw
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As2
Asthesophisticationofspintronicdeviceinvestigationscontinuestorapidlygrow,adeeperandmoredetailedcharacterizationoftheferromagneticsemiconductormaterialusedintheelaborationofmanyofthesestructuresisbecomingevermoreessentialtoproperlyunderstandingtheoperationanddesignofdeviceelements.Thespin-orbitmediatedcouplingofmagneticandsemiconductorpropertiesinthesematerialsgivesrisetomanynoveltransport-relatedphenomenawhichcanbeharnessedfordeviceapplications.Fortheunderstandingandreliablefunctioningofsuchdevicesitisimportanttounderstandandbeabletodeterminethemagneticanisotropyoftheparentlayerandofreadilystructuredsamples.WhileFMR[1]andSQUID[2]caneffectivelymeasurethemainmagneticanisotropyoftheparentlayer,theyarenotpracticalforanisotropystudiesonindividualsmallstructureswhichhavetoolittlemagneticmomenttobedetected.Transportmeasurements,ontheotherhandprovideaveryeffectivemeansofextensivelystudyingtheanisotropyatafixedtemperature.Usingavectorfieldmagnet,manymagneticfieldscansindifferentin-plane(orevenspace-)directionscanberecordedwithinashorttimeframewithoutremountingthesample.Anisotropictransportpropertiesallowforelectricalmonitoringofthemagnetization.Thisprovidesdetailedinformationontheangulardependenceofthemagneticbehaviour.
Atechniqueforextractingthemagneticanisotropybytransportmeanswasintroducedin[3].Inthistreatisewediscussinvestigationsofthemagnetizationbehaviourbytranportmeansingeneralandinparticulartheanisotropyfingerprinttechniqueinmuchgreaterdetail.Wepresentavarietyoffingerprintsofdifferent(Ga,Mn)Aslayersat4Kanddiscussthealwayspresentthreesymmetrycomponentsofthemagneticanisotropyat4K.Wethenextendthemethodtothecaseofauniaxialmaterial,whichisnecessarytodescribe(Ga,Mn)Aslayersathighertemperaturesorstructuredsubmicrondevices.Weinvestigatethetemperaturebehaviourofthe(Ga,Mn)Asanisotropyusingthefingerprintmethod.ItshowsthetypicaltransitionfromamainlybiaxialsystematlowtemperaturetoauniaxialsystemclosetoTC.Fromthesefingerprintswecanalsoextractthetemperaturedependenceofthedomainwallnucleationandpropagationenergy.
1.AnisotropicTransportandMagneticAnisotropyin(Ga,Mn)As
Theferromagneticsemiconductor(Ga,Mn)Asisstronglyanisotropicbothintransportandinitsmagneticproperties.Itshowsastronganisotropicmagnetoresistanceeffect(AMR):Theresistivityforacurrentflowperpendiculartothemagnetizationρ⊥islargerthanρ||paralleltothemagnetization[4].Ohm’slawisbestexpressedwiththeelectricfieldEbrokenupincomponentsparallelandperpendiculartothemagnetizationM[5,6]
E=ρ||J||+ρ⊥J⊥
(1)
withJthecurrentdensity.Theprojectionontothecurrentpathgivesthelongitudinalresistivityρxx(longitudinalAMReffect):
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
ρxx=ρ⊥−(ρ⊥−ρ||)cos2(ϑ),
(2)
3
whereϑistheanglebetweenMandJ.ThedependenceoftheHallresistivityρxy(transverseAMRorPlanarHalleffectPHE)onthemagnetizationdirectionfollowsdirectlyfromtheelectricfieldcomponentperpendiculartothecurrentpath:
ρxy=−
ρ⊥−ρ||
sin(2ϑ),2
(3)
WiththehelpoflongitudinalAMRandPHEmeasurementsitisthuspossibletomonitorthemagnetizationdirectionϑandconcludeonthemagneticanisotropyofthematerial.
Thecubicanisotropyofthecrystalstructureisreducedbygrowthstrain.Herewediscusshighlydopednotannealed(Ga,Mn)AslayersgrownundercompressivestrainonGaAs(001)substrates.Forstandardthicknessandexperimentallyrelevantholedensities,thegrowthstrainresultsinanadditionalstronghardaxisingrowthdirectionthatconfinestheeasyaxestothelayerplane.Thisin-planeanisotropyisstronglytemperaturedependentaswillbediscussedinsection4.At4Kthematerialshowsamainbiaxialmagneticanisotropywitheasyaxesalongthe[100]and[010]crystaldirection.Theaboveiswellunderstood,however,inadditiontothistwouniaxialanisotropytermshavebeenobservedtheoriginofwhichisnotclear.Oneadditionaluniaxialanisotropytermwitheasyaxisalong[110]or[110]istypicallypresentandhasbeenseeninmanylaboratories.Amuchsmalleradditionaluniaxialanisotropycomponentwitheasyaxisalong[010]or[100][7]hasoftenbeenoverlooked,becauseitistypicallytoosmalltobevisibleinstandardSQUIDmeasurements.Recently,theanisotropyfingerprinttechnique[3]allowedustoshowthatallthree,themainbiaxialandthetwouniaxial,anisotropycomponentsaresimultaneouslypresentintypical(Ga,Mn)Aslayersat4K.Section2.1explainsthedetailsofthemethod.Fingerprintsoftypical(Ga,Mn)Aslayersareshowninsection2.4todiscussthetypicalrelativestrengthoftheanisotropycomponentsandtheirvariationfromlayertolayer.
Inthiscontextitishelpfultonotethatforthepurposeofcalculatingthemagnetostaticenergyinthesingledomainmodel,anylinearcombinationofuniaxialanisotropycomponentswithdifferenteasyaxescanbeexpressedasalinearcombinationofa[110]anda[010]uniaxialanisotropyterm.Itisknownthat:
√
asinα+bcosα=a2+b2·sin(α+β),
(4)
whereβisgivenbyarctan(b/a)andarctan(b/a)±πifa≥0anda<0respectively.Thisrelatestwosinefunctionsofthesameperiodbutwithdifferentphasetoathirdsinefunctionwiththesameperiodandanewphase.Consequently,wecanexpressanycombinationoftwouniaxialanisotropycomponentsina(Ga,Mn)Aslayerbyanequivalentlinearcombinationofthe[110]andthe[010]uniaxialanisotropyterm.The
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
E(a)
E(b)H=0
H=5% K /Mcryst4
ε0
45
90
135
180
225
270
315
360
ϑ
04590135180225270315360
ϑ
E(c)
H=20% K /Mcryst
E(d)
H=50% K /Mcryst
04590135180225270315360
ϑ
04590135180225270315360
ϑ
Figure1.Energylandscapeatzerofield(a).Thesymmetrycomponentsofthe
anisotropyareshownwiththinlines(biaxialred;uniaxialalong[110]blue;uniaxialalong[010]black).Theenergysurfaceevolveswithincreasingfieldalong45◦(b-d)causingmagnetizationreversalthroughdomainwallnucleationandpropagation(b)orthroughStoner-Wohlfarthrotation(candd).
choiceofonlythesetwodirectionsisthusfullygeneralanddoesnotexcludeotheruniaxialanisotropycomponents,e.g.duetospecificstrainconditionsinaspecificsample.
Summingupthethreeanisotropytermsofdifferentsymmetry,wecanexpressthemagnetostaticenergyEofamagneticdomainwithmagnetizationorientationϑwithrespecttothe[100]-crystaldirection:
E=
Kcryst
sin2(2ϑ)+Kuni[110]sin2(ϑ−135◦)+Kuni[010]sin2(ϑ−90◦)−MHcos(ϑ−ϕ),(5)4
wherethelasttermistheZeemanenergy.TheanisotropyconstantsKcrystinthebiaxialanisotropytermandKuni[110]andKuni[010]inthetwouniaxialtermsdependdifferentlyonthemagnetizationMandthusontemperature[2].Thisresultsinacharacteristictemperaturedependenceoftheoverallmagneticanisotropyofthelayer.Thistypicaltransitionfrommainlybiaxialbehaviourat4KtouniaxialbehaviourclosetotheCurietemperatureisinvestigatedwiththeanisotropyfingerprinttechniqueinsection2.1.
Fig.1showstheenergylandscape,aplotoftheenergyofamagneticdomainasafunctionofthemagnetizationangle,andhowitevolveswithmagneticfield.Underanappliedmagneticfield,themagnetizationcanreversethroughtwomechanisms.Onemechanismiscalledcoherent(Stoner-Wohlfarth[8])rotation:Withincreasingmagneticfieldthemagnetization(markedwithareddotinFig.1)followsthelocalminimumoftheenergysurfaceuntiltheminimumdisappearsasillustratedinpanel
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As5
Figure2.Hallbarstructuretypicalofthoseusedinthisstudy,processedbyopticallithographyanddryetching.Thecontactsareestablishedbygolddeposition.Thisbaris40µmwideand0µmlong.
btod.Thedashedarrowinpanelb,ontheotherhand,illustratesthereversalbyDWnucleationandpropagation.ItappearsiftheenergygainedbyreorientingthemagnetizationdirectiontoanotherlocalminimumoftheenergysurfaceislargerthantheDWnucleation/propagationenergyε.ADWisnucleatedandanewdomainwiththenewmagnetizationorientationgrowsuntilitextendsoverthewholestructure.Aswillbecomeevident,theinherentbehaviourof(Ga,Mn)AsisgenerallydominatedbyStoner-WohlfarthrotationathighmagneticfieldsandbyDW-nucleation/propagationrelatedeventsatlowfields.
2.MonitoringtheMagnetizationBehaviourinTransport
Thedescribedmagnetizationbehaviourcanbeobservedindirectorindirectmagnetizationmeasurements,andleadstoaverycharacteristictwo-stepreversalprocessinSQUIDandmagnetoresistancemeasurements.Three-jumpmagneticswitchingisalsopossibleinveryspecificsituations[9].
HerewewilldiscussthecharacterizationofthemagneticanisotropyoftypicalGa1−xMnxAstransportlayers.Thelayersweregrownbylow-temperaturemolecularbeamepitaxy(LT-MBE,270◦C)onahigh-qualityGaAsbufferonanepireadysemiinsulatingGaAs(001)substrate.Theycontainbetweenx=2%and5%Mnandshowanas-grownTCaround50Korabove.Alllayerswerepatternedinto40to60µmwideHallbarstructuresasshowninFig.2byopticallithographyandchlorineassisteddryetching.Contactsareestablishedthroughmetalevaporationandliftoff.Duringtheprocessingcareistakentonotexposethesamplestoanyannealingtreatment.
Assumeabiaxialmagneticanisotropywitheasyaxesalongthein-plane100crystaldirections(coordinateaxesinFig.3a)asafirstapproximationofthe4Kanisotropyof(Ga,Mn)As.AssumefurtherthatthelongitudinalresistanceofaHallbarwithitscurrentalongthe[100]axisismeasuredwhiletheexternalmagneticfieldissweptfromahighnegativetoahighpositivevaluealongadirection30◦awayfrom
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As6
Rxy+ a)
2easy[010]b)
3Rxxϕ = 30°Hc1Hc241B[100]easy23Rxy= 0 1Rxx||-2-10142Rxy- Magnetic Field [arb. u]Figure3.Two-stepmagnetizationreversal.a)Sketchshowingthemagnetization
behaviourinhard(blue)andeasy(red)axisHallbars.b)ThecorrespondingcalculatedAMRscanfortheeasyaxisHallbar(leftscale),whichisequivalenttoaPlanarHallscanonthehardaxisbar(rightscale).
the[100]axis.Usingeq.5and2wecannowcalculatethecorrespondingAMRsignalshowninFig.3b(lefty-axisscale).Athighnegativefields,themagnetizationisforcedalongthefielddirection(notshown).(1)AsthefieldisdecreasedMgraduallyrelaxesthroughStoner-Wohlfarthrotationuntilitisalignedwithitsclosesteasyaxis.AtzerofieldMisthusparallelto[100]andtothecurrent,yieldingthesmallestresistancevalueR||.(2)AtasmallpositivefieldHc1a90◦-DWisnucleatedandpropagatesthroughthestructureresultinginanabruptchangeofthemagnetizationdirectiontothe[010]direction.Misnowperpendiculartothecurrent,yieldingthemaximumresistancevalueR⊥.(3)AtthesecondswitchingfieldHc2,another90◦-DWisnucleatedandthemagnetizationjumpsclosetothe[100]easyaxis.(4)WithincreasingmagneticfieldsMrotatesagaintowardsthemagneticfielddirection.Theentireprocessisofcoursehystereticallysymmetric(notshown).
IfanotherHallbarisorientedalongthe[110]crystaldirection(blueinFig.3a)theeasyaxes[100]and[010]haveanangleof±45◦withthecurrentpath.Anabruptswitchofmagnetizationfromoneeasyaxistotheothercorrespondsaccordingtoeq.3toasharpswitchingeventbetweentwoextremaofthetransverseresistance.ThecalculatedPlanarHallsignalisthusuptoaconstantidenticalwiththepreviouslydiscussedcurveinFig.3b,inthiscasecenteredaroundzerotransverseresistance(blue/righty-axis).Becauseofthis,transverseresistancemeasurementsarethemethodofchoiceforHallbarsorientedalongacrystallinehardaxis.ForHallbarsalonganeasyaxis,longitudinalresistancemeasurementsaretheonlyusefultechnique.Indeed,ifthecurrentdirectionisrotatedby45◦,Eq.3transformsintoEq.2(plusanuninterestingoffset).
Fig.4showsAMR(middle)andPlanarHalleffect(right)curvesforfieldsweepsalongdifferentanglesϕintheplanecalculatedusingEq.5incombinationwithEq.2and3respectively.Thedomainwallnucleationenergyεwasexaggeratedinthesecalculations(30%ofKcrystinsteadof5-10%aswouldbetypicalfor(Ga,Mn)As))toillustratebothStoner-WohlfarthrotationandDW-relatedmagnetizationswitchingin
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
Anisotropic MR
[010]7
Planar Hall Effect
90°60°
a)0°[100]R+
ΔR xy2
45.1°60°30°,
45.1°
0ΔR xy
2ΔR xy2
0°,90°
30°
R||
[010]0°
-
b)20°[100]R
90°
+
60°45.1°90°30°
60°
0ΔR xy2
45.1°
R||
0°30°
-
0°
c)[010]R+
ΔR xy290°60°
45°[100]0°,90°
0ΔR xy-24-4-3-2-10
1
2
45.1°
30°,60°
30°0°
R||
-4-3-2-101245.1°
334
Magnetic Field [in units of K /M ]crystMagnetic Field [in units of K /M]cryst
Figure4.CalculatedAnisotropicMagnetoresistance(middle)andPlanarHalleffect
(right)curvesformagneticfieldsweepsalongseveralin-planeangles(ϕ=0◦,30◦,45.1◦,60◦and90◦)forHallbarorientationsasindicatedinthesketchesontheleft,withcurrentalonga)0◦b)20◦c)45◦.Theunderlyingmagneticanisotropyisbiaxialwitheasyaxesalong[100]and[010].Allangleswithrespecttothe[100]crystaldirection.Thedomainwallnucleation/propagationenergyεisexaggeratedwith30%ofKcryst.
thesamefigure.ThemiddlepanelofFig.4a,showsMRcurvesforaHallbaralongabiaxialeasyaxis.Iftheexternalmagneticfieldissweptalongthe[100]easyaxis(0◦),themagnetizationisalwaysparalleltothecurrentdirection.Theresistance(blackline)thustakesitslowestvalueR||throughoutthewholefieldrange.Ifthefieldissweptalongthe[010]easyaxis(90◦),themagnetizationisalwaysperpendiculartothecurrentresultinginahighresistancevalueR⊥throughoutthewholecurve(thincyan).Forintermediatemagneticfieldangles,themagnetizationisparalleltothefieldathighpositiveandnegativefields,yieldingintermediateresistancevalues.Atzerofieldthemagnetizationrelaxestotheclosesteasyaxis,whichis[100]forthe30◦scanand[010]forthe60◦and45.1◦scans,correspondingtothelowestandhighestresistancevaluerespectively.The45.1◦-scan(greenline)canbeusedtomeasurethestrengthofthemagneticanisotropy.Wecanreadouttheanisotropyfield(-2Kcryst/M),atthepointwherethemagnetizationstartstoturnawayfromthemagneticfielddirection.A
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As8
measurementwithtwopossibleresistancestatesatzerofieldalwayssuggestsabiaxialmagneticanisotropy.However,notethatthesetwostatescancorrespondtothesameresistancevalueas,e.g.,iftheeasyaxisandthecurrentincludeanangleof45◦(leftpanelofFig.4c),wherethe0◦(black)and90◦(cyan)curvefallontopofeachother.ThepanelsontherightshowthecalculatedPlanarHallresistancecurvesintherespectiveconfigurations.Note,that,theAMRsignalinFig.4aisidenticaltothePHEsignalinFig.4c,asdiscussedabove.Theeasyaxisshowingconstantresistancethroughoutthewholescancaneasilybeidentifiedinanyoftheconfigurations,evenifcurrentandeasyaxisincludeanobliqueangleasinFig.4b.
Theswitchingfields(Hc1andHc2inFig.3b)canbederivedanalyticallyfromeq.5[10](hereforapurebiaxialanisotropy;Kuni[110]=Kuni[010]=0).TypicallyDWnucleationandpropagationdominatesthemagnetizationreversalprocess,i.e.εismuchsmallerthanthecrystallineanisotropy.Thatiswhyitcanbeassumedthatthemagnetostaticenergyminimaremaintoagoodapproximationalongthebiaxialeasyaxesduringthedouble-stepswitchingprocess.TheenergydifferencebetweenstablemagnetizationstatesisthusgivenbytherespectivedifferenceinZeemanenergy(Eq.5).Whentheenergygainedthrougha90◦magnetizationreorientationislargerthanε90◦,thenucleationandpropagationenergyofa90◦-DW,athermallyactivatedswitchingeventbecomespossible.This,onthetimescaleofourmeasurement,resultsinanimmediateswitchingevent.Forexample,tocalculatethefieldrequiredforthemagnetizationtojumpfrom0◦to90◦,thedifferenceintheZeemantermsisequatedwithε
∆E0◦→90◦=−MH[cos(0◦−ϕ)−cos(90◦−ϕ)]=ε90◦>0.
ReorganizinggivestheswitchingfieldHcasafunctionofϕ.
−ε90◦
Hc=
M[cosϕ−sinϕ]
(7)(6)
Thisequationisthesameforotherpairsofangles,exceptforthesignsinfrontofthesineandcosinefunctionsinthedenominator,inthefollowingmarkedwith±.TheswitchingfieldequationabovedescribesstraightlinesifplottedinapolarcoordinatesystemusingHasradialandϕasangularcoordinate.ThepolarplotinFig.5showstheresultingcharacteristicsquarepattern[10].Weexpresstheswitchingfieldpositionsinthisplot(thicklines)incartesiancoordinatesusingx=Hccosϕandy=Hcsinϕtogetabetterfeelingfortheswitchingfieldbehaviourandtoextractimportantparameters.
Hc·M[±cosϕ±sinϕ]=−ε90◦
M[±x±y]=−ε90◦
y=±x±
(8)
ε90◦MThecharacteristicpolar-plot-patternforabiaxialmaterialisthusasquarewithdiagonalsalongtheeasyaxes(thecoordinateaxesinFig.5).Thefirstswitching
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As9
[010]Hc2Hc1ε/M[100]xyFigure5.Switchingfieldpositions(thicksolidlines)inapolarplotforabiaxialmaterialwitheasyaxesalong[100]and[010](coordinateaxes).Themagnetizationdirectionineachregionoftheplotisindicatedbyarrows(red/black:high/lowresistance)andthehardaxesbydashedlines.
field(thickbluelines)islargestalongtheeasyaxes,whereHc1=ε/M.TheDWnucleation/propagationenergycanbeextractedfromthediagonalofthesquare,whose
90◦
lengthisequalto2ε.AllswitchingfieldlinesinFig.5haveanangleof45◦totheMcoordinateaxes.Thedashedlinesrepresentthehardmagneticaxes.ArrowsillustratethedirectionofthemagnetizationandtheircolorthecorrespondingresistancestateoftherespectivesectioninanAMRmeasurementwithcurrentalongoneoftheeasyaxes.
NeglectingcoherentrotationistypicallyagoodmodelforthefirstswitchingfieldsHc1,whereasHc2isinfluencedbymagnetizationrotationespeciallyclosetothehardaxes.PairsofparallellinesinFig.5donotextendtoinfinityinpractice,theymoveclosertothehardaxes(seethefiguresandthediscussioninsection2.4).ThemagneticfieldneededtoforcethemagnetizationparalleltotheexternalfieldinthehardaxisdirectioniscalledtheanisotropyfieldHa.ItisameasureoftheanisotropystrengthandcanbecalculatedfromEq.5usingthedefinitionoftheanisotropyfield:Haisthestrengthofafieldalongthehardaxis(here45◦)neededtosuppressthelocalminimaalongtheeasyaxes.
Ha=
2KcrystM
(9)
2.1.TheAnisotropyFingerprintTechnique
TraditionallythemagneticanisotropyisinvestigatedbydirectmeasurementoftheprojectionofthemagnetizationontocharacteristicdirectionsusingSQUIDorVSM.
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
[010](a)0.100.05Rx [ Ω ]y10 mT0.00(b)10Magnetic Field [ mT ]10
Hc2J0
[100]-0.05-0.100Hϕ=80°Hc124681012Magnetic Field [ mT ]14-10
-100Magnetic Field [ mT ]
10Figure6.a)PlanarHallEffectmeasurementalongϕ=80◦withmarkedfirstandsecondswitchingfield,colorscaleandthecorrespondingsectionofacolorcodedresistancepolarplot(inset).b)ResistancepolarplotfromafullsetofPlanarHallmeasurementsalongevery3◦.The80◦-sectioncorrespondingto(a)ismarkedbyadashedline.
Theadventofvectorfieldmagnetshasrecentlyopeneduppossibilitiesforacquiringadetailedmappingoftheanisotropy.Weintroducedsuchamethod,whichbuildsontheabovediscussedangulardependenceofthemagnetizationswitchingfields,inRef.[3]andexpanduponithere.Itisbasedonsummarizingtheresultsoftransportmeasurementsintocolorcodedresistancepolarplots(RPP)whichactasfingerprintsfortheanisotropyofagivenstructure.Notonlyisthismethodfasterthanthetraditionalalternatives,butitisalsomoresensitivetocertainsecondarycomponentsoftheanisotropy,inparticularthosewitheasyaxescollineartotheprimarybiaxialanisotropycomponent[10].Thetechniquethusoftenrevealstheexistenceofcomponentswhichwouldbemissedusingstandardtechniques.Moreover,thetechniquecanbeappliedtostudytheanisotropyoflayersbyusingmacroscopictransportstructures,orapplieddirectlytodeviceelements.Itcanrevealeffectsofprocessingortheinfluenceofsmallstrainfieldsdueto,forexample,contacting.
InthepresentcasetheplanarHalleffectisusedtomonitorthemagnetizationbehaviourinastandardHallbarorientedalongthe110crystaldirection.Fig.6ashowsaplanarHallscanalongϕ=80◦.Aftermagnetizingthesampleat-300mTalong80◦,thefieldisbroughtdowntozero.Thefigureshowsthetypicaldouble-stepswitchingbehaviourasdiscussedpreviouslyinconnectionwithFig.3b.ThearrowsindicatethemagnetizationdirectionintherespectivefieldregionswithrespecttothecrystaldirectionsgiveninFig.6b.AbruptjumpsinresistancemarkthefirstandsecondswitchingfieldHc1andHc2.ThenormalizedresistancevalueiscolorcodedaccordingtothescaleinFig.6a.Itisplottedinapolarcoordinatesystemalongthemagneticfielddirectionϕandwiththemagneticfieldasradialscale.TheinsetofFig.6ashowsthepolarplotsectioncorrespondingtothe80◦-scaninthisfigure.SuchPlanarHallscansarerecordedalongmanydifferentin-planefielddirectionsandsummarizedinthe
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As11
ε/ΜH [ ε/M ]00-1BeUhε/Μ2Κ /Μu1ε/Μ90°−δ1
(a)
(b)1
10-1
1(c)
ε/Μ-1
-1
0H [ ε/M ]
1
BeUe-10H [ ε/M ]
-1
0H [ ε/M ]
1
Figure7.Calculatedresistancepolarplotsforabiaxialmaterialwitheasyaxesalongthe[100](0◦)and[010](90◦)crystaldirections(a)andthesamematerialwithanadditionaluniaxialanisotropyalong[010](b)or[110](c).ColorscaleoftheresistanceasinFig.6.εdenotesthe90◦-DWnucleation/propagationenergy.
resistancepolarplot(RPP)inFig.6b.The80◦-segmentismarkedbyadottedwhiteline.
WecannowcomparetheobservedswitchingfieldpatterninFig.6bwiththecalculatedshapeinFig.5.WhileacursoryexaminationsuggestsasimilarHc1-pattern,amoredetailedcomparisonrevealssignificantdifferences:Focussingontheinnermostswitchingevent,thepatternisindeedstronglysquare-like,confirmingthatthe(Ga,Mn)Ashasamainlybiaxialmagneticanisotropyat4K.Thediagonalsofthissquare-likeHc1-patternareclosetothe[100]andthe[010]crystaldirection,theeasyaxesofthebiaxialanisotropyterm.However,theinnerregioniselongated(arectangleandnotasquare)-thesignatureofanadditionaluniaxialanisotropytermwithaneasyaxisbisectingthebiaxialeasyaxes(Fig.7c),aswillbediscussedinsection2.3.Additionallyweobserveadiscontinuityinthemiddleoftherectanglesidesanddark”open”cornersclosetothe[010]direction.Thisischaracteristicofauniaxialmagneticanisotropytermcollinearwithoneofthebiaxialeasyaxes(Fig.7b)andwillbediscussedindetailinsection2.2.
ThesequalitativechangesinthebehaviourofHc1arekeysignaturesofthedifferentanisotropytermsofthe(Ga,Mn)Aslayer.Asetofhighresolutiontransportmeasurementscompiledintoacolorcodedresistancepolarplotthusconstitutesafingerprintofthesymmetrycomponentsoftheanisotropy.Itallowsforthequalitativeandquantitativedeterminationofthedifferentanisotropyterms.Itcanprovetheirexistenceandvisualizetheirrespectiveeffectsonthemagnetizationreversal.2.2.Signatureofa010UniaxialTerm
ThefingerprintofamagneticallybiaxialmaterialinFig.7aisequivalenttotheswitchingfieldpatterninFig.5.IfanadditionalsmalluniaxialanisotropyKuni[010]alongoneofthebiaxialeasyaxes(herealong90◦)ispresent,thesquarepatternisalteredasshown
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As12
inFig.7b.Thefour-foldsymmetryisbroken,andthebiaxialeasyaxescorrespondtoenergyminimaofslightlydifferentdepth,becauseoneofthemisparallel(biaxialeasy,uniaxialeasy;BeUe)andoneperpendicular(biaxialeasy,uniaxialhard;BeUh)totheeasyaxisoftheuniaxialanisotropycomponent.
Theangledependentswitchingfieldcanbederivedasdiscussedabovefollowing[10]:Againitisassumed,thattheminimaoftheenergysurfaceremainattheirzerofieldanglesthroughouttheswitchingprocess.Inthepresentcasehowever,theenergyminimumalongthe[010]directionisfavored.Itsenergyis∆E=Kuni[010]smallercomparedwiththe[100]direction,whichresultsin
Hcy
uni[010]90
=±M
[cosϕ±sinϕ]
ε◦±K
(10)
=±x±
ε90◦M±
Kuni[010]
MMagnetizationreorientationstowardstheeasierbiaxialeasyaxisBeUeoccurnowatlowermagneticfieldscomparedtothepurebiaxialanisotropy;switchesawayfromBeUeathigherfields.Thesignsineq.10arechosenappropriately.Asaresult,theHc1-patternchangesasdisplayedinFig.7b.Characteristicfeaturesarethestepsalongthebiaxialhardaxes,forexamplealong45◦,andthetypical”opencorners”alongtheBeUeaxis.Theseopencorners(inblackalong90◦inFig.7b)arisebecausea180◦-magnetizationreorientationthroughthenucleationofa180◦-DWisenergeticallyfavoredinasmallangularregionaroundtheBeUeaxis[10].
Sincetheisotropicmagnetoresistance[11]oftypicalsamplesisrelativelysmallcomparedtotheAMR,twomagnetizationdirectionsdifferingby180◦arenotdistinguishableonthescaleconsideredhere,andhavenearlythesamecolorintheRPP,creatingthecharacteristic”opencorner”.Thestrengthoftheuniaxialanisotropy
u1
componentcanbedeterminedfromtheseparation2KbetweenHc1andHc2alongtheMBeUhaxis.
2.3.Signatureofa110UniaxialTerm
InthissectionwedescribetheeffectsofauniaxialanisotropytermKuni[110]withitseasyaxis(along135◦)bisectingthebiaxialeasyaxes.Thisuniaxialanisotropycomponentflattenstheenergysurface(eq.5)andshiftsthepositionsoftheenergyminimaby(seeFig.8a)
Kuni[110]δ1
=arcsin()22Kcryst
(11)
towardstheuniaxialeasyaxis[12].Allfourminimahavethesameenergyvalue.To
derivetheswitchingfieldsweequatetheDWnucleation/propagationenergyεwiththedifferenceinZeemanenergybetweentheinitialandfinalmagnetizationangleintherespectiveswitchingevent.AsillustratedinFig.8a,themagnetizationdirectioncan
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
E
(a)
H=0
K = 30% Kuni [110]cryst
90°+δ/2
180°-δ/2
270°+δ/2
360°-δ/2
13
2
[110]
uniaxialhard
(b)(c)
H=10% K /McrystE[110]
uniaxialeasy
global y [ε/M]easy 1
1global easy 2
1
-1-1
2ε90°-δ-2
x [ε/M]
ε90°+δ0°45°90°135°180°225°270°315°360°
ϑ
0°45°90°135°180°225°270°315°360°ϑ
-2
Figure8.a)Auniaxial[110]anisotropycomponentflattenstheenergysurface(eq.5)andshiftsthepositionsoftheenergyminima.b)Energylandscapewithmagneticfieldappliedalongthe−δ/2-globaleasyaxisdirection.Aclockwiseandcounterclockwisejumpofthemagnetization(withtherespectiveε)areequallypossible.c)Switchingfieldpositionsinthepolarplot(thickblacklines),globaleasyaxes(orange)andeasyandharddirectionofthe[110]anisotropycomponent(blue).
changeby90◦+δor90◦−δdependingonwhetherthemagnetizationrotatesclockwiseorcounterclockwise.Following[13]weusedifferentDWnucleation/propagationenergiesε90◦+δandε90◦−δrespectively.Theswitchingfieldpositionsinthepolarplotgivenincartesiancoordinatesare
y90◦+δy90◦−δ
=x±
ε90◦+δ
M2[cos(45◦−δ/2)]√(12)
=−x±
ε90◦−δ
M2[cos(45◦+δ/2)]√Equation12describestwoparallelsetsoflines,asshowninFig.8c(thickblacklines),whosedistancefromtheoriginisdeterminedbytherespectiveε.MOKEexperimentsonepitaxialironfilmsgrownonGaAs(withsimilaranisotropytermsas(Ga,Mn)As)confirmthatasexpectedthesenseofthemagnetizationrotationchangeswhencrossingaglobaleasyaxis[12].Thetwolinesetsofeq.12representtheclockwiseandcounterclockwisesenseofmagnetizationrotation.Ifthefieldisappliedalongaglobaleasyaxes(minimaofFig.8a)bothrotationdirectionsareenergeticallyequivalent.Consequentlythelinesmustintersectalongglobaleasyaxesdirections.Fig.8bshowstheenergylandscapeofFig.8awhenamagneticfieldisappliedalongthe−δ/2-globaleasyaxisdirection.Forbothrotationdirections,theZeemantermatthefirstswitchingfieldHc1isequaltotherespectiveε.Wecanthuscalculatethedependenceofεontheangle∆ϑbetweeninitialandfinalmagnetizationdirection:
ε90◦±δε∆ϑ
=Hc1M(1−cos(90◦±δ))
(13)
=ε90◦(1−cos(∆ϑ))
whichisintuitivelyreasonable.Atthesametimewefind,thatHc1alongaglobaleasyaxisisε90◦/M.Notethatthiscarefultreatmentofεisnecessary,thesimplified
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
2014
(a)[110](b)
20.019.819.6Magnetic Field [mT]100R(kΩ)19.419.2-10
19.0 0 mT 20 mT 50 mT 100 mT04590135180Angle ° 225270315360-20
-20
-10
0
10
20
Magnetic Field [mT]
Figure9.a)Fingerprintofatypical20nmthick(Ga,Mn)AsHallbarandb)angle-dependentlongitudinalresistanceatdifferentfieldsaftermagnetizingalongϕ.
modelofaconstantεindependentoftheDWangle∆ϑ,wouldleadtotheincorrectconclusion,thattherectangleinthepolarplotwouldhaveitslongaxisperpendiculartotheuniaxialeasydirection.
AsummaryoftheaboveisshowninFig.7c.Thecharacteristicpatternofamainlybiaxialanisotropywithabisectinguniaxialanisotropycomponentisrectangular.Thediagonalsoftherectanglearethe”globaleasyaxes”,theirlengthis2ε90◦/M.Theanglebetweentheglobaleasyaxesgivestherelativestrengthofthetwoanisotropycomponents(usingeq.11).Theeasyaxisoftheuniaxialtermisalongthemedianlineofthelongeredge,forexamplealong135◦inFig.7c.
Thepresenceandsignofthe110anisotropytermcanbeverifiedwiththehelpofAMRorPHEmeasurementsatmagneticfieldsofmediumamplitude.Forcomparison,longitudinalresistancemeasurementsonaHallbarsampleorientedalonga(Ga,Mn)Aseasyaxis(0◦)areconvertedintotheRPPdisplayedinFig.9a.Thisfingerprintshowsanoverallbiaxialanisotropywitheasyaxescloseto0◦and90◦.Thecentralpatterniselongatedalong135◦,suggestingthatauniaxialanisotropycomponentwitheasyaxisalongthisdirection(the[110]crystaldirection)ispresent.
ThisisconfirmedbythemeasurementsinFig.9b.HeretheHallbarsampleisfirstmagnetizedinahighmagneticfieldof300mTalonganangleϕ.Thelongitudinalresistanceisthenmeasured,whilethefieldisslowlysteppeddowntozero.Fig.9bshowstheresistancevaluesat100mT,50mT,20mTand0mTasafunctionofthefieldangle.Fortheinterpretationofthesecurves,imagineforexampleanenergylandscapeasshowninFig.8,wherethestrengthofthe[110]uniaxialanisotropytermisexaggerated.Thistermdescribesthewidthandtheheightofthe”hills”intheenergysurface.The”hill”intheuniaxialeasyaxisdirection(here135◦)islowerthantheenergybarrierperpendiculartothisdirection,whichissteeperandcoincideswiththe
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
300
[010]15
200
Magnetic Field [mT]100
[100]0
-100
-200
-300
-300-200-1000100200300Magnetic Field [mT]
Figure10.TypicalAMRfingerprintmeasurementofa100nmthick(Ga,Mn)AsHallbar.Thecurrentdirectionisalong0◦.
hardmagneticaxisofthe[110]uniaxialterm.Atzerofieldthemagnetizationisalignedwithoneofthebiaxialeasyaxes(blackcurveinFig.9b).Thestepsinthiscurvemarkthepeakpositionsofthe”hills”intheenergylandscape-thebiaxialhardaxes.Atmediumfields(e.g.50mTinFig.9b),themagnetizationisrotatedawayfromtheglobaleasyaxes,causingdeviationsfromthestep-likebehaviouratzerofield.Thesedeviationsoccuratsmallerfieldvaluesalongtheuniaxialeasydirection[110]comparedwiththeuniaxialhardaxis[110].Thedirection(meaningthesignofKuni[110])ofthe[110]uniaxialanisotropyisthusthesameasinFig.9a:theabruptresistancechangeat45◦marksthehardandthesmootherbehaviourat135◦theeasyuniaxialaxisdirection.2.4.(Ga,Mn)Asat4K-TypicalFingerprints
Intheabovesectionswedescribeamethodwhichissensitiveenoughtodetectboth,the[110]andthe[010]uniaxialanisotropyterm.Hereweapplythemethodtoourtypical(Ga,Mn)Aslayersandfindthatallthreeanisotropycomponents,thebiaxialandthetwouniaxialones,arepresentineverysample.Variousfingerprintsshowthetypicalvariationoftherelativeanisotropytermsandthecharacteristicsatlowandhighfields.
ThefingerprintsinFigs.9a,10and11werecompiledfromlongitudinalAMRmeasurementsontypical(Ga,Mn)Aslayersofdifferentthickness.AlltheseplotsincludingFig.6bshowthesamegeneralpattern,resemblingthefour-foldswitchingfieldpatterninFig.7.Themainanisotropycomponentinalltheselayersat4Kisthusbiaxialwitheasyaxesalongthe[100]and[010]direction.ThestrengthofthisbiaxialtermismeasuredbytakingseparatehighresolutionAMRcurvesalongthehardmagneticaxesandconcludingtheanisotropyconstantfromtheanisotropyfields.Typical2K/Mvaluesareoftheorderof100mT...200mT,ascanbeseene.g.inthehighfieldfingerprintsinFigs.10and11aandc,whereinthesectionsalongthehard
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
200
[100]40
[100]16
(a)(b)100Magnetic Field [mT]Magnetic Field [mT]20
0[010]0
[010]-20
-100-40
-200-200
-100
0
Magnetic Field [mT]
100
200
-40
-20
0
20
40
Magnetic Field [mT]
200
[100]40
100Magnetic Field [mT]Magnetic Field [mT]20
0[010][100](c)(d)0
[010]-20
-100-40
-200-200-1000Magnetic Field [mT]
100200-40
-20
0
20
40
Magnetic Field [mT]
Figure11.Highangularresolutionfingerprintmeasurements(a,b)andcloseupsofthecentralregion(c,d)fortwoHallbarsmadeofthesame70nmthickmaterialbutorientedalongorthogonalcrystaldirections.Thecurrentflowsalong0◦inaandbandalong90◦incandd.
axesthemagnetizationisalignedwiththeexternalfieldatthesefieldvalues.
Theanisotropycomponentsandεdifferofcoursefromwafertowafer.Thegeneralpatternontheotherhandisverysimilar.AlloftheRPPshowclearlyanelongationoftheHc1-patternintoarectangle,thesignatureofthe[110]anisotropycomponent.Stepsalongthehardaxesandthetypicalopencornerarealsoalwayspresent,thetypicalfeatureofthe[010]anisotropycomponent.Bothuniaxialanisotropycomponentsarethusclearlypresentinallinvestigatedsamples.
Thecrystaldirectionsareindicatedinallfingerprintsinyellow.Wefind,thattheelongationofthecentralpattern,andthustheeasyaxisofthe[110]uniaxialcomponent,pointsalongthe[110]crystaldirectioninallshowntypicaltransportsamples.Atthispoint,wewouldliketonote,thatthesignofthe[110]uniaxialcomponent,i.e.whethertheeasyaxispointsalong[110]or[110],dependsoncarrierconcentrationandMn
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
10017
(a)Magnetic Field [mT]10(b)Magnetic Field [mT]5050[100]0[100]-50[010]-5[010]-10-100-100
-50
0
50
100
-10-50510
Magnetic Field [mT]
Magnetic Field [mT]
Figure12.FingerprintmeasurementandhighresolutionRPPatlowmagneticfieldfora70nmthick(Ga,Mn)Aslayerwithstronglyvisible[010]uniaxialanisotropycomponentbutarelativelysmall[110]term.
dopingasshownby[14].Theelongationcouldthusalsobealongthe[110]directiondependingongrowthconditionsandapossibleannealingtreatment.Intheasgrownsamplesinvestigatedhereat4K,thetypicalstrengthofthe[110]uniaxialanisotropyisoftheorderof10%ofthebiaxialanisotropyconstant.Asexamplesoftherangeofvaluestypicalforthisratiovarieswenoteavalueof10%fromFig.12,15%fromFig.6band20%fromFig.11.
TheopencornersoftheHc1-patternindicatethedirectionoftheeasyaxisofthe[010]uniaxialterm.Thiseasyaxisdirectionissampledependentandcanbealongeitherofthebiaxialeasyaxesofthesample.Intheshownpolarplotsweseethiseasyaxisalong[010]inFig.6bandalong[100]inFigs.9,10,11and12.Alsothestrengthofthe[010]termissampledependent.ItcandominatethelowfieldswitchingbehaviourasforexampleinFig.12orbebarelyvisibleasinFig.9a.Inanycase,thestrengthofthisanisotropycomponentisextremelysmallcomparedtothemainbiaxialanisotropy.EveninFig.12,wherethepresenceofthe[010]uniaxialcomponenthasastronginfluenceonthemagnetizationbehaviouratlowfields,itsanisotropyfield2Kuni[010]/Misonly1.6mT,only1%ofthetypicalbiaxialanisotropyconstant.
Figures11aandcshowsimilarAMRfingerprintsontwoHallbarsmadefromthesamewafer,butorientedalongorthogonalcrystaldirections.Panelscanddshowacloseupofthecentralregion.Bothfingerprintsshowvirtuallythesameswitchingpatternwithinvertedcolorsbecauseoftheorthogonalcurrentdirections.Thisshowsthehighhomogeneityofthewaferandtherobustnessofthemethod.Evenonseveralcooldowns,weseevirtuallythesameswitchingpattern(notshown),althoughtheresistanceofthesamplechangesslightlyuponrecooling.NotethatshapeanisotropyinthesestructuresisnegligiblecomparedwiththecrystallinemagneticanisotropycontributionasdiscussedinRef.[15].Itistoosmalltoplayanysignificantroleinthesemeasurements.
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As18
Wehaveneglectedcoherentrotationtoderivesimpleformulasfortheswitchingfieldsinthepolarplots.ThisistypicallyagoodmodelforthefirstswitchingfieldsHc1,whereasHc2isinfluencedbymagnetizationrotationespeciallyalongthehardaxes,asmentionedabove.Theeffectsofcoherentrotationareofcoursetakenintoaccountinthenumericalmodellingthatisbasedontheenergyequation5.
Asdiscussedpreviously,theextentoftheHc1-patternisdeterminedbyε,whiletheextentoftheHc2-featuresismainlygivenbythebiaxialanisotropyconstantthroughtheanisotropyfield(seeeq.9).Iftheratioofbiaxialanisotropytoεisverylarge,thecentralpatterniswelldescribedbyDW-nucleation/propagation-relatedswitchingeventsalone.Inthehigherfieldregion,theminimaoftheenergysurfacemoveconsiderablyandtheHc2-switchingeventsapproachthehardaxesdirections.
ThetypicalsituationisforexampleseeninFig.10,whereAMRcurvesalongevery10◦weretakenonaHallbaralong0◦.Thecentralregionshowsarectangularpattern(signatureofthe[110]uniaxialterm)withopencornersandstepsalongthehardaxes(signatureofthe[010]uniaxialterm).Thereisalmostnocoherentrotationattheselowfields.MagnetizationreorientationsoccurthroughDWnucleationandpropagationasseenfromtheabruptcolorchanges(betweenredandblue).Thesecondswitchingfieldsalongthehardaxes(e.g.along45◦at50mT)aremarkedbysmoothcolortransitionsprovingthatcoherentrotationisatplay.Smoothcolortransitionsatevenhigherfields(greentoblackaround0◦andredtogreenaround90◦)finallyarecausedbytheisotropicMReffect[11].
ThefingerprintinFig.9showsaslightlydifferentsituation.Theratiooftheanisotropyenergytoεcannotbetreatedasinfinite.ForthisreasonalsotheHc1-patternshowsaconsiderableinfluenceofcoherentrotation.Thesidesoftherectanglearenolongerparalleltoeachotherandthecornersdonotdrawanangleof90◦.Still,theelongationisobviousandthedifferencebetweenswitchingeventstowardsthetwoeasyaxesisobservable.
Insummarywehaveshownavarietyoffingerprintsoftypical(Ga,Mn)Astransportlayersat4K.Thefingerprintmethodallowedustoidentifythesimultaneouspresenceofthebiaxialandtwouniaxialanisotropycomponents.Indeedall(Ga,Mn)Aslayersinvestigatedshowboththeseuniaxialcomponents,includinglayerswherethe[010]componentcouldnotbeidentifiedinSQUIDmeasurements.Asaruleofthumb,thetypicalrelativestrengthoftheanisotropytermsisoftheorderofKcyst:Kuni[110]:Kuni[010]∼100:10:1.
3.UniaxialMagneticAnisotropy
Thissectiondealswiththemagnetizationbehaviourofmagneticallyuniaxialmaterialsandhowitmanifestsitselfintransportmeasurements.Thelatterwithtwospecificapplicationsinmind:
•The(Ga,Mn)Asmagneticanisotropyisstronglytemperaturedependentwiththe110uniaxialanisotropytermbeingdominantclosetotheCurietemperature
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
easyaxis0°19
a)
1.00.8(R-Rmin)/ΔRxx0.60.40.20.0-400b)20°-2000200H (% of K /M)cryst400-400-2000200H (% of K /M)cryst400c) 45°d)90°1.00.8(R-Rmin)/ΔRxx0.60.40.20.0-400-2000200H (% of K /M)cryst400-400-2000200H (% of K /M)cryst400 0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 50° 55° 60° 65° 70° 75° 80° 85° 90° 95° 100° 105° 110° 115° 120° 125° 130° 135° 140° 145° 150° 155° 160° 165° 170° 175°Figure13.Calculatedanisotropicmagnetoresistancecurvesinamagneticallyuniaxialmaterialformagneticfieldsweepsalongmanyin-planedirections(0◦..85◦thinsolid,90◦thick,95◦..175◦dashed)forHallbarorientationsasinthesketcheswithcurrentalong(a)0◦,(b)20◦,(c)45◦,and(d)90◦.Allangleswithrespecttotheuniaxialeasyaxis.Thefieldissweptfromlefttoright.
(section4).
•Thefingerprintmethodcanalsobeusedtocharacterizeindividualtransportstructuresorevendevicecomponents.Uniaxialmagneticbehaviourwasrecentlyachievedbysubmicronpatterningof(Ga,Mn)Asandthecorrespondinganisotropicstrainrelaxation[15].
WeagaintrackthemagnetizationangleusingAMRmeasurementsandfinallydiscussthecolor-codedRPP,theanisotropyfingerprint,expectedforamaterialwithuniaxialmagneticanisotropy.
Fig.13showsAMRcurvescalculatedforamagneticallyuniaxialmaterialusingEq.5withε=30%Kuni.TheindividualpanelsillustratehowthecurrentdirectionwithrespecttotheeasyaxismodifiestheoverallpictureofasetofAMRcurves.Inallfourpanelsasinglezerofieldresistancestatecanbeidentified,correspondingtothe
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
200
20
(a)(b)
(c)
Magnetic Field [% of Kuni]100
0
-100
-200
-200
-100
0
100
200
-200
-100
0
100
200
-200
-100
0
100
200
Magnetic Field [% of Kuni]Magnetic Field [% of Kuni]Magnetic Field [% of Kuni]
Figure14.CalculatedAMRfingerprintsofamagneticallyuniaxialmaterialwitheasyaxisalong135◦andcurrentalong0◦.Magnetizationreversalthrough(a)coherentrotationonly(Stoner-astroid)and(b)DWnucleationandpropagationwithεaccordingtoEq.13(c)simplifiedmodelassumingaconstantε=2ε90◦.(ε90◦=30%Kuni)
easyaxismagnetizationorientation.TheresistancevalueisgivenbytheanglebetweencurrentandeasyaxisthroughEq.2.Iftheexternalfieldissweptalongthiseasyaxisdirection(0◦,thinblackline),themagnetizationisalignedwiththeeasyaxisthroughoutthewholescan,yieldingahorizontallinethroughthefocalpointatzerofield.Thehardaxisscan(thickline)revealstheanisotropyfield;(thesameasinthebiaxialcase,Eq.9)
Ha=
2KuniM
(14)
theexternalmagneticfieldperpendiculartotheeasyaxis,wherethemagnetizationstartstodeviatefromthefielddirection.Themagnetizationrotationinpanels(a)and(d)yieldsaparabolicdependenceoftheresistanceonthefieldamplitude[16].InallotherMRscansthemagnetizationrelaxestotheclosesteasyaxisdirectionwhilethefieldisdecreasedfromhighnegativevalues,reachingthefocalpointatzerofield.Afterzero,themagnetizationdirectionreversesbycirca180◦throughDWnucleationandpropagation,whichisvisibleasabruptresistancechangesinFig.13,forexamplethespikesaround100%Kuniinpanel(a).Abacksweepresultsinahystereticallysymmetriccurvewiththeswitchingeventsatnegativefields(notshown).
Fig.14showstheresultsofsimilarcalculationswithhighangularresolutionplottedinRPPfashion.Heretheeasyaxisisorientedalong135◦andthecurrentflowalong0◦.Thecolorsareafunctionofthethecurrentdirection,forexampledarkcolorathighmagneticfieldsalongthecurrent,whiletheswitchingeventpatternisdefinedbythemagneticpropertiesalone.
Ifastructureissmallerthanthesingle-domainlimit[17,18]itisenergeticallyunfavourabletonucleateaDW.Insteadthemagnetizationrotatescoherently(Stoner-Wohlfarthmodel[8]).Fig.14ashowsthewellknownStoner-Wohlfarthastroid[8,19]whichdescribestheswitchingpositionsofauniaxialparticleundercoherentrotation.Itsextentinboththeeasyandthehardaxisdirectionisgivenbytheanisotropyfield.
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As21
AllowingforDWnucleationwithεaccordingtoeq.13truncatestheeasyaxiscornersoftheastroidasshowninFig.14b.Theextentε90◦/MintheeasyaxisdirectionisameasurefortheDWnucleation/propagationenergy.Afieldsweepalongthehardmagneticaxis,isstillfullydescribedbyStoner-Wohlfarthrotationandtheextentinthisdirectionisgivenbytheanisotropyfield.Thedetailedshapeoftheswitchingfieldpatterndependsonthemodelusedfortheε-dependenceontheDWangle.Fig.14cshowstheRPPcalculatedassumingaconstantε∆ϑ=2ε90◦independentofthemagnetizationdirectionsofthedomainsseparatedbytheDW.WhiletheeasyandhardaxisextentarethesameasinFig.14b,thebettercorrespondenceoftheshapeofthefeaturesin(b)then(c)totheexperimentaldataisfurtherevidenceinsupportfortheabovedescribeddescriptionoftheDWenergies.
4.TemperatureDependenceofthe(Ga,Mn)AsAnisotropy
Thefingerprintmethodprovidesuswiththeopportunitytoinvestigatethetemperaturedependenceofthemagneticanisotropy.Figures15and16showAMRfingerprintsatvarioustemperaturesforthelayerinvestigatedinFig.11at4.2K.TheleftcolumnshowsresultsonaHallbarpatternedalong90◦(the[100]crystaldirection).IntherightcolumntheHallbarisorientedalong0◦.Thelayeris,astypical,veryhomogeneousandtheswitchingpatternsinthetwocolumnsarevirtuallyidenticalatalltemperatures(exceptforatrivialinversionofthecolorscales).
Themainlybiaxialanisotropyistheoriginofthenearlyfour-foldsymmetryinthelowtemperaturefingerprints.Theuniaxialanisotropytermwitheasyaxisalongthe[110]crystaldirectiontakesoverwithincreasingtemperatureandbecomesthedominanttermclosetoTC:alreadythefingerprintsat30Kexhibitthetypical2-foldsymmetryofauniaxialanisotropy.Theshortaxisofthepatternmarkstheuniaxialeasyaxis;theextendedfeatureperpendiculartoitthemagnetichardaxis(seeSec.3fordetails).TheAMRamplitudeandtheswitchingfields,i.e.thesizeofthefingerprintpattern,decreasesignificantlywithtemperature(notethedifferentmagneticfieldscales).
ThisisconsistentwithdetailedSQUIDstudies[2,20].TheretheanisotropyconstantsKcrystandK[110]wereextractedfromhardaxismagnetizationmeasurementsvsmagneticfield.Thetwotermsexhibiteddifferenttemperaturedependence.Inparticularitwasobservedthatthetemperaturedependenceoftheanisotropyconstantsoriginatesintheirpower-lawdependenceonthevolumemagnetizationM.WhiletheuniaxialanisotropyconstantisproportionaltothesquareofM,thebiaxialtermdependsonM4.Asaresult,thebiaxialanisotropyterm,whichdominatesthemagneticbehaviourat4K,decreasesmuchfasterwithincreasingtemperaturethantheuniaxialterm.Thisisthereasonwhythemagneticanisotropyundergoesatransitionfrommainlybiaxialtomainlyuniaxialwhenthetemperatureincreasesfrom4KtoTC.
Fig.17ashowsSQUIDmeasurementsonthesampleofFigs.15and16.Aftermagnetizingthesamplealongagivendirection,wemeasuretheprojectionoftheremanentmagnetizationontherespectiveaxisanditsevolutionwithincreasing
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
40
22
10 K(a)10 K40
(b)
Magnetic Field [mT]2020
00
-20-20
-40-40
-40-2002040-40-2002040
Magnetic Field [mT]Magnetic Field [mT]
30
(c)
15 K30
(d)
15 K20Magnetic Field [mT]20
1010
00
-10-10
-20-20
-30
-30
-20
-10
0
10
20
30
Magnetic Field [mT]
-30
-30
-20
-10
0
10
20
30
Magnetic Field [mT]
20
(e)20 K20
(f)20 KMagnetic Field [mT]1010
00
-10-10
-20-20
-20-1001020-20-1001020
Magnetic Field [mT]Magnetic Field [mT]
Figure15.TemperaturedependentAMRfingerprintmeasurementsofthesampleinFig.11aandb(rightcolumn)withcurrentalong0◦andFig.11candd(leftcolumn)withcurrentalong90◦.
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
10
23
25 K(a)25 K10
(b)
Magnetic Field [mT]55
00
-5-5
-10
-10
-5
0
Magnetic Field [mT]
5
10
-10
-10
-5
0
Magnetic Field [mT]
5
10
10
(c)
30 K10
(d)
30 K5Magnetic Field [mT]5
00
-5-5
-10
-10
-5
0
Magnetic Field [mT]
5
10
-10
-10
-5
0
Magnetic Field [mT]
5
10
(e)
2
40 K2
(f)
40 KMagnetic Field [mT]11
00
-1-1
-2-2
-2-1012-2-1012
Magnetic Field [mT]Magnetic Field [mT]
Figure16.Fig.15.
HightemperatureAMRfingerprintmeasurements,continuationof
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
20Longitudinal Moment [10A/m]Long Moment [kA/m]24
a)320b)DW Nucleation Energy ε [J/m]3015100-20-1000100Magnetic Field [mT]ε / M [ mT ]10151050020405 <010> [110] [-110] |M| Fingerprints10T [ K ]180051015202530Temperature [K]3045001020304050Temperature [K]6070Figure17.a)MeasurementoftheprojectionoftheremanentmagneticmomentofthesampleofFigs.15and16ontodifferentcrystalaxesbySQUIDmagnetometry.VerticalgraylinesindicatethetemperaturesofthefingerprintmeasurementsinFigs.15and16.b)Domainwallnucleationenergyε90◦(symbols)versustemperature,derivedfromε90◦/M(inset)extractedfromthefingerprints.
temperature.Displayedaremeasurementsalongthetwo4Khardmagneticaxes[110]and[110]andoneofthebiaxialeasyaxes010.Theyshowthesameanisotropytransitionasthefingerprintsabove.At4K,the010crystaldirectionisclosetoaglobalmagneticeasyaxisandthusshowsthelargestprojectionoftheremanentmagneticmoment.The[110]directioncoincideswiththeeasyaxisoftheuniaxialKuni[110]anisotropyterm.Thatiswhyitisclosertoaglobaleasyaxisthanthe[110]direction[21]andinconsequenceshowsalargerprojectionoftheremanentmoment.Astemperatureincreases,themagnetizationdecreasesandtherelativeamplitudeoftheanisotropytermschanges,asdescribedabove.Thisresultsinagradualreorientationoftheglobaleasyaxeswithtemperature,changingtheanglebetweenremanentmagnetization(alongtheglobaleasyaxisclosesttothesweepdirectioninFig.17a)andtherespectivesweepdirection.Theresultofboththedecreasingvolumemagnetizationandchangingrelativeprojectionsontothedifferentsweepdirections,canbeseeninFig.17a.Thegreen[110]remanence,e.g.,gainsrelativeweightwithincreasingtemperature.Thissupportstheobservationsofthefingerprintmeasurements,wherethe[110]anisotropytermgainsininfluenceathighertemperatures.Giventhespecificanisotropybehaviour,knownfromthetransportmeasurements,wecanestimatetheabsolutevalueoftheremanentmagnetizationfromthesquarerootofthesumofthesquaresofthetwomagnetizationprojectionsalong[110]and[110](Pythagoreantheorem)[2].TheresultisdisplayedingrayinFig.17a.SuchamagnetizationmeasurementwithSQUIDiscomplementarytotransportinvestigations,sincethosecanonlygiveenergyscalesinfieldunits,i.e.normalizedtothevolumemagnetizationlikeK/Morε/M.
Thequantitativedeterminationoftheanisotropyconstantsathighertemperaturesismorecomplexthanat4Kandworkisongoingtofindasetofstraightforwardrulesasforthemainlybiaxialsystemat4K.Determiningthedomainwall
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As
a)
4
25
b)
, , <100> <110>|M| Magnetic Field [mT] Fingerprint in b)10
-6Remanent Moment [10emu]5
3
0
2
1
-5
00
10
20
30
40
50
60
70
80
Temperature [ K]
-10
-10
-5
0
Magnetic Field [mT]
5
10
Figure18.a)Projectionoftheremanentmagneticmomentofa20nmthick(Ga,Mn)AslayermeasuredwithSQUIDalongdifferentcrystalaxes.35K,thetemperatureoftheanisotropyfingerprintmeasurement[28]inb)isindicatedbyaverticalgrayline.
nucleation/propagationenergyε,however,ispossiblewiththedescribedtechniques.BlacksymbolsinFig.17bshowpreliminaryresultsdeterminedfromthefingerprintsinFigs.15and16.Thelineisaguidetotheeye.Themethodfortheextractionbuildsonthetechniquesdescribedinsection2:2ε/Misbasicallygivenbythediagonaloftherectangularfirstswitchingfieldpatternformainlybiaxialsamplesandbytheeasyaxisdirectiondiameterforpurelyuniaxialsamples.Thestrengthofthismethodisthatwecanextractε90◦easilyfromtheplots,becausetheglobaleasyaxesdirectionsareobviousfromsymmetryconsiderations.Itisnotnecessarytoassumeaconstant(orknown)globaleasyaxisdirectionandwecanthusfullyaccountforthecomplextemperaturedependenceoftheeasyaxisbehaviourwithoutfittingthedatatoacomplicatedmodel.BoththedeterminationofMandofε/Marenotasaccurateinthetransitionregion,wheretheenergysurfaceatzerofieldisalmostflatoverawideangularrange.ThisisaprobablecauseofthedeviationfromperfectexponentialbehaviourforthedatainFig.17batintermediatetemperatures.
Thesquarehysteresisloopwithabruptswitchingevents,shownintheinsetofFig.17a,pointstoaDWnucleationdominatedprocess,asopposedtoaprocess,wheretheenergyneededforDWpropagationisthelimitingparameter[22].AlsothetemperaturedependenceoftheDWnucleationenergyinFig.17bfitstothestandardexponentialbehaviourexpectedforthetemperaturedependenceofthecoercivity[23,24].Wesuggestthattheabovemethodisonetoolthat,incombinationwith,e.g.,timedependentandopticalinvestigations[25],canclarifytheDWnucleationprocessin(Ga,Mn)As.Itcancomplementrecentopticalstudies,thatidentifythenatureofpinningcentersandvisualizetheprocessofDW-relatedmagnetizationswitchingin(Ga,Mn)As[26,27].
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As26
SQUIDstudiesonanothersampleareshowninFig.18a.AsinFig.17aweplottheprojectionoftheremanentmagneticmomentvstemperature.Shownaremeasurementsalongthetwobiaxialeasyaxes(redandpurple)andalongthetwobisectingdirections(greenandblue).Theabsolutevalueofthevolumemagnetizationisestimatedasdiscussedabove(gray).Thelargedifferencebetweenthetwobiaxialeasyaxesdirections(redandpurple)atintermediatetemperatures(25to60K)pointstoasymmetrybreakingcausedbyarelativelystronguniaxial[010]anisotropycomponent.Forthisreasonweinvestigatethissampleat35K,wherethe[010]componentshouldbestronglyvisibleinthesymmetryofthefingerprintpattern,andwherethetransportsignalisstilllargeenoughtogetcleanmeasurements.Fig.18bshowstheresultingfingerprint.Thesymmetrybreakingbetweenthetwobiaxialeasyaxes(herealong0◦and90◦)isapparentfromthepicture.Therelativelystronguniaxial[010]termcausesapreferenceforthemagnetizationorientationalong90◦.Theresistancepolarplotinturnresemblesinpartsatypicalbiaxialfingerprintpattern(between45◦and135◦andthepointsymmetricregion)andintheotherquadrantsatypicaluniaxialfingerprintpattern(between135◦and225◦).[28]Wecanthusconclude,thattherelativelysmalluniaxialtermgainsinimportanceatintermediatetemperaturesinthissample.Thisiswherethetwostrongeranisotropytermshaveapproximatelyequalweight,compensatingeachotherinspecificangularregions.Asmallextratermintheenergyequationthenplaysahugerole:itcreatesanadditionallocalminimumintheenergysurface,causingverydifferentswitchingbehaviourindifferentquadrantsofthepolarplot.
Insummary,wehaveshownthattheextendedanisotropyfingerprinttechniqueisapowerfulmethodtoaccessthefinedetailsofcomplexanisotropiesinferromagneticsemiconductors.Weusedthismethodtoshowthatalltransportlayersinvestigatedshowedthreesymmetrycomponentsofthemagneticanisotropy;themainbiaxialtermandtwouniaxialtermsalongthe[110]andthe[010]crystaldirections.Therelativestrengthoftheseanisotropytermsisroughlyspeaking,oftheorderofKcyst:Kuni[110]:Kuni[010]∼100:10:1at4K.Athighertemperaturestherelativestrengthofthe[110]anisotropycomponentincreases.TheoverallbehaviouroftheanisotropytermsisconsistentwithSQUIDinvestigations,showingthetypicaltransitionfromamainlybiaxialtoamainlyuniaxialmaterialwithincreasingtemperature.Anextractionofthe90◦-DWnucleationenergyanditstemperaturedependenceisalsopossible.Measurementshaveshown,thatthe[010]uniaxialanisotropyterm,whoseexistenceissometimesquestioned,canbeclearlyobserved.Weshowthatitcanhaveaparticularlystrongimpactontheswitchingbehaviourforcaseswherethecooperativeeffectofthebiaxialandthe[110]uniaxialanisotropytermleadtoaflattenedenergysurface.Acknowledgements
TheauthorswishtothankS.H¨umpfnerandV.HockforsamplepreparationandC.ChappertandW.VanRoyforusefuldiscussions,andacknowledgethefinancialsupportfromtheEU(NANOSPINFP6-IST-015728)andtheGermanDFG(BR1960/2-2).
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)AsReferences
27
[1]X.LiuandJ.K.Furdyna,J.Phys.Condens.Matter18,R245R279(2006)
[2]K.YWang,M.Sawicki,K.W.Edmonds,R.P.Campion,S.Maat,C.T.Foxon,B.L.Gallagher,and
T.Dietl.Phys.RevLett.,95:217204,2005.[3]K.Pappert,S.H¨umpfner,J.Wenisch,K.Brunner,C.Gould,G.Schmidt,andL.Molenkamp.
Appl.Phys.Lett.,Vol.90,p.062109,2007.
[4]D.V.Baxter,D.Ruzmetov,J.Scherschligt,Y.Sasaki,X.Liu,J.K.Furdyna,andC.H.
Mielke.Phys.Rev.B,Vol.65,p.212407,2002.
[5]J.P.Jan.(Eds:F.Seitz,D.Turnbull),AcademicPressInc.NewYork,1957.
[6]T.R.McGuireandR.I.Potter.IEEETrans.Magn.,Vol.MAG-11,p.1018,1975.[7]C.Gould,C.R¨uster,T.Jungwirth,E.Girgis,G.M.Schott,R.Giraud,K.Brunner,G.Schmidt,
andL.W.Molenkamp.Phys.Rev.Lett.,93:117203,2004.
[8]E.C.StonerandE.P.Wohlfarth.Phil.Trans.Roy.Soc.A,240:599,1948.[9]R.P.Cowburn,S.J.Gray,andJ.A.C.Bland.Phys.Rev.Lett.,79:4018,1997.[10]R.P.Cowburn,S.Gray,J.Ferr´e,J.Bland,andJ.Miltat.J.Appl.Phys.,78:7210,1995.
[11]F.Matsukura,M.Sawicki,T.Dietl,D.Chiba,andH.Ohno.PhysicaE,Vol.21,p.1032,2004.[12]C.Daboo,R.J.Hicken,D.E.P.Eley,M.Gester,S.J.Gray,A.J.R.Ives,andJ.A.C.Bland.
J.Appl.Phys.,75:5586,1994.
[13]H.X.Tang,R.K.Kawakami,D.D.Awschalom,andM.L.Roukes.Phys.Rev.Lett.,90:107201,
2003.
[14]M.Sawicki,K.-Y.Wang,K.W.Edmonds,R.P.Campion,C.R.Staddon,N.R.S.Farley,C.T.
Foxon,E.Papis,E.Kaminska,A.Piotrowska,T.Dietl,andB.L.Gallagher,Phys.Rev.B71,121302(R)(2005)(4pages)
[15]S.H¨umpfner,K.Pappert,J.Wenisch,K.Brunner,C.Gould,G.Schmidt,andL.W.Molenkamp,
Appl.Phys.Lett.90102102(2007).
[16]F.G.West.Nature,188:129,1960.
[17]W.F.Brown.J.Appl.Phys.,39:993,1968.[18]A.Aharoni.J.Appl.Phys.,63:5879,1988.[19]A.HubertandR.Sch¨afer.Springer,Heidelberg,2000.
[20]M.Sawicki,K.Y.Wang,K.W.Edmonds,R.P.Campion,C.R.Staddon,N.R.S.Farley,C.T.Foxon,
E.Papis,E.Kamiska,A.Piotrowska,T.Dietl,andB.L.Gallagher.Phys.Rev.B,71:R121302,2005.
[21]SeeFig.8,where[110]isalong45◦and[110]along135◦.[22]J.Ferr´e.SpinDynamicsinConfinedMagneticStructuresI,pages127–165.(Eds:.Hillebrands
andK.Ounadjela),Springer,2002.
[23]Theextractionmethodalreadyaccountsforthecorrectionofthetemperaturedependenceofthe
anisotropyandtheunderstandingoftherespectivefingerprintpatternguarantiesthatonlyswitchingeventsduetoDWnucleationareanalyzed,asdistinctfromswitchingeventsthatarecausedbyStoner-Wohlfarthrotation.The”constantanisotropy”criterionfortheexponentialbehaviouristhussatisfied.
[24]VertesyandTomas.J.Appl.Phys.,77:25,1995.
[25]L.Thevenard,L.Largeau,O.Mauguin,G.Patriarche,andA.Lemaˆıtre,N.VernierandJ.Ferr´e,
Phys.Rev.B73,195331(2006).
[26]K.Y.Wang,A.W.Rushforth,V.A.Grant,R.P.Campion,K.W.Edmonds,C.R.Staddon,
C.T.Foxon,B.L.Gallagher,J.Wunderlich,andD.A.Williams.tobepublishedinJ.Appl.Phys.;arXiv:0705.04742007.
[27]A.Dourlat,C.Gourdon,V.Jeudy,C.Testelin,L.Thevenard,andA.Lemaˆıtre,phys.stat.sol.
(c)3,40744077(2006).
[28]Thesmallresistancedeviationof∼0.7%inthelastquadrantiscausedbytemperaturedrift.The
temperaturedecreasedby∼1Kduringthemeasurementbetween∼300◦and360◦,changing
DetailedTransportInvestigationoftheMagneticAnisotropyof(Ga,Mn)As28
therelativeweightofthebiaxialandtheuniaxialanisotropycomponents,slightlymodifyingthefingerprintpatterninthissection.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务