DavidG.Turner
DepartmentofAstronomyandPhysics,SaintMary’sUniversity,Halifax,NovaScotiaB3H3C3,Canada
turner@crux.smu.ca
arXiv:astro-ph/0601687v2 20 Sep 2007MohamedAbdel-SabourAbdel-Latif
DepartmentofAstronomyandAstrophysics,NationalResearchInstituteOfAstronomyandGeophysics
(NRIAG),Box11242,Helwan,Cairo,Egypt
sabour2000@hotmail.com
and
LeonidN.Berdnikov
SternbergAstronomicalInstituteandIsaacNewtonInstituteofChile,MoscowBranch,13Universitetskij
prosp.,Moscow1199,Russia
berdnik@sai.msu.ru
ABSTRACT
˙foraCepheidisshowntobeaparameterthatiscapableofindicatingRateofperiodchangeP
theinstabilitystripcrossingmodeforindividualobjects,and,inconjunctionwithlightamplitude,likelylocationwithintheinstabilitystrip.Observedratesofperiodchangeinover200MilkyWayCepheidsaredemonstratedtobeingeneralagreementwithpredictionsfromstellarevolutionarymodels,althoughthesamplealsodisplaysfeaturesthatareinconsistentwithsomepublishedmodelsandindicativeoftheimportanceofadditionalfactorsnotfullyincorporatedinmodelstodate.
Subjectheadings:stars:Cepheids—stars:evolution
1.Introduction
Cepheidsrepresentabriefphaseinthepost-main-sequenceevolutionofstarsthatoriginallyhadmassesinexcessof∼31
inCepheidO–Cdiagrams(plotsofthedifferencesbetweenObservedtimesoflightmaximumandthoseComputedfromalinearephemeris)havebeenrecognizedforthepasthalfcenturyasev-idencefortheevolutionofsuchstarsthroughtheinstabilitystrip(Paranego1958;Struve1959;Erleksova&Irkaev1982).AsnotedbyStruve(1959),“Itappearsthatstudiesofperiodchangearebyfarthemostsensitivetestavailabletotheastronomerfordetectingminutealterationsinthephysicalcharacteristicsofastar.”
ObservationsofperiodchangesinCepheidshavebeenmatchedwithsomeconfidencetoevo-lutionarymodelsofmassivestarsinvariouscross-ingsoftheinstabilitystrip(e.g.,Turner1998;Turner&Berdnikov2001,2004)inordertoiden-tifythedirectionofstripcrossingforindividualvariables.Whenusedforsuchpurposes,thestudyofCepheidperiodchangesbecomesanimportanttoolforthecharacterizationofindividualmembersoftheclass.
InprincipleitshouldalsobepossibletouserateofperiodchangeforindividualCepheidstoes-tablishlikelylocationwithintheinstabilitystrip.BecausestripcrossingsforindividualCepheidsoc-curatdifferentratesandatdifferentluminosi-tiesforspecificstellarmasses,theobservedratesofperiodchangemustbecloselyrelatedtostripcrossingmodeandlocationwithintheinstabil-itystrip.Potentialconstraintsareimposedbyvariationsinchemicalcompositionandpulsationmode,e.g.,fundamentalmode,firstovertone,etc.(Berdnikovetal.1997;Turneretal.1999),aswellasbyourlimitedabilitytoestablishsmallratesofperiodchangeforO–Cdatacontainingsizeableobservationaluncertainties(Szabados1983).Inthispaperwedemonstratethelinkinmoredetail.2.
BasisoftheRelationship
ThelinkbetweenrateofperiodchangeinCepheidsandlocationwithintheinstabilitystripisillustratedwiththeaidofFig.1.Thedia-gramisatheoreticalHRdiagramthatdepictsthelocationoftheCepheidinstabilitystripac-cordingtotheparametersderivedforMilkyWayCepheids(Turner2001),alongwithGenevaevo-lutionarytracksforstarsof4,5,7,and10M⊙atZ=0.008fromLejeune&Schaerer(2001).Linesofconstantstellarradiusareshowncrossing
variousportionsoftheinstabilitystrip.Accord-ingtothewellestablishedCepheidperiod-radiusrelation,theyshouldrepresentlinesofconstantpulsationperiodforindividualCepheids.
¿FromanexaminationofFig.1itisclearthat,ifoneconsidersonlyCepheidsofaspecificperiodandinacommoncrossingoftheinstabilitystrip,thoseonthehotedgeofthestripmustbe∼20%moremassivethanthoseonthecooledgeofthestrip.Sincerateofevolutionincreasesinpropor-tiontothemassofastar,Cepheidslyingonthehotedgeofthestripareevolvingfaster,andhencechangingtheirpulsationperiodsatamorerapidrate,thanCepheidsofidenticalperiodlyingonthecooledgeofthestrip.Rateofperiodchangethereforerelatesdirectlytolocationwithinthein-stabilitystripforindividualCepheids.Differencesinstripcrossingmodesareonlyaminorconcern.Cepheidswithincreasingperiodsmustbeinthefirst,third,orfifthcrossingofthestrip,whereasCepheidswithdecreasingperiodsmustbeinthesecondorfourthcrossingofthestrip.
AminorcomplicationarisesfromrestrictionsonourabilitytoidentifyperiodchangesinCepheidstiedsolelytostellarevolution.SomeCepheidsexhibiterraticperiodchangesthatap-peartooriginatefromrandomfluctuationsinpul-sationperiod.SZTau(Berdnikov&Pastukhova1995),SVul(Berdnikov1994),andV1496Aql(Berdnikovetal.2004)areexcellentexamples,althoughinthefirsttwocasesitispossibletoidentifytheunderlyingevolutionarymodificationstopulsationperiod.
AstudybyBerdnikov&Ignatova(2000)maygivetheimpressionthatstellarevolutionhasonlyaminoreffectonCepheidO–Cdiagrams,sinceitnotesthatparabolictrendsweredetectedinonly67of230Cepheidssurveyed.Thatnumberismis-leading,however,giventhataprevioussurveybyTurner(1998)hadfoundparabolictrendsin137Cepheidsfromamuchsmallersample.ItwasactuallyintendedtoindicatethepoortemporalcoverageandlackofextensiveO–Cdataavailableformanywell-studiedGalacticCepheids,asitu-ationthathasbeenremediedinrecentyearsbyourongoingprogramtoobtainarchivaldataonCepheidbrightnessvariationsusingtheHarvardCollegeObservatoryPhotographicPlateCollec-tion.AtpresenttheparabolictrendsinO–Cdia-gramstypicalofstellarevolutionarefoundtobe2
extremelycommon.AsurveybyGlushkovaetal.(2005)citesatypicalfrequencyof∼80%inbothclusterandfieldCepheids,forexample,althoughtheir“anomalous”objectsincludeCepheidslikeSVVulinwhichtheevolutionarytrendisquitedistinct(Turner&Berdnikov2004).Amorereal-isticfrequencyforMilkyWayCepheidsdisplayingevolutionarytrendsisinexcessof∼90%.Formanyoftheremainingobjects,theevolutionarytrendsmaybemoreobviousinlongertimebase-linesoflightcurvecoverage.
AsalsopointedoutbyFernie(1990)andbyBerdnikov&Turner(2004),theO–Ctrendsin-dicativeofevolutioninCepheidsneednotbestrictlyparabolic.Iftherateatwhichamas-sivestarisevolvingthroughtheinstabilitystripisnotconstantwithtime,theO–CdatafortheassociatedCepheidvariablemaybebetterde-scribedbyathirdorfourthorderpolynomial.TheCepheidsYOph(Fernie1990)andWZCar(Berdnikov&Turner2004)aretwoobjects(ofseveralhundred)wherethatappearstobethecase.Suchcomplicationsmayaffectthederivedratesofperiodchange,butinmostcasesonlybysmallamounts.InthelargemajorityofstudiesofCepheidperiodchanges,thederivedrateofperiodchangereflectstheevolutionofthestarthroughtheinstabilitystrip(seeSzabados1983).3.
StellarEvolutionPredictions
Mostcomputationalevolutionarymodelsforevolvedstarsareusedforconstructingevolution-arytracksratherthantestingforpulsationinsta-bility.But,asnotedbycitetpa58,itispossibletousethebasicinformationtheyprovideongrad-ualchangesinluminosityandeffectivetempera-turetopredictexpectedratesofperiodchangeforCepheidsofdifferentperiod.Astartingpointisthewellknownperiod-densityrelation:
Pρ
1
21
=Q,
3π)
2
wherePisthepulsationperiod,ρisthedensity,Misthestellarmass,Risthestellarradius,andQ,thepulsationconstant,hasasmallperiodde-pendence(e.g.,Kraft1961;Fernie1967)thatwe
assumeherevariesasP
1
624P
=
L
−
T
.
Thedesiredquantity,therateofperiodchangeP
˙,isobtainedfromtabulateddifferencesinstellarlu-minosityandeffectivetemperatureasafunctionofageasamodelstarevolvesthroughtheinstabilitystrip.
ForofP
˙thepresentstudywecalculatedvaluesfromtheaboverelationshipusingcom-putationalstellarevolutionarymodelsfromavarietyofavailablepublishedsources,namelyMaeder&Meynet(1988),Alibertetal.(1999),Lejeune&Schaerer(2001),andClaret(2004).Thepublisheddatawereusedtocomputedif-ferentparameters,dependingupontheavailabil-ityofthenecessaryinformation.Alibertetal.(1999)citeparametersforstarsofdifferentmassreachingthehotandcooledgesoftheinstabil-itystrip,sotheirdatayieldinformationonlyaboutratesofperiodchangenearthecenterofthestrip.Inothercases,suchasClaret(2004),thereissufficienttimeresolutionintheoutputparameterstotrackchangesinpulsationpe-riodacrossindividualinstabilitystripcrossings.Fortheremainingsources(Maeder&Meynet1988;Lejeune&Schaerer2001),includingClaret(2004),wecalculatedratesofperiodchangefortheintersectionoftheevolutionarytrackswiththeobservationallydelineatedboundariesoftheinstabilitystripdefinedempiricallybyTurner(2001),whichareclosetothosepredictedbymod-elsofpulsationinstability(Alibertetal.1999),aswellasforpointslyingwithinthestripbound-aries.Pulsationperiodswereestablishedusingtheperiod-radiusrelation(Turner&Burke2002).Thepresentresultsdifferfromthoseobtainedear-lier(Turner&Berdnikov2001,2003)inbeingtiedtoalargervarietyofmodelswithagreaterrangeofmetallicity,andbytheinclusionofaweakperioddependenceforQintheperiod-densityrelation.ThecomputedresultsonratesofperiodchangeareplottedinFig.2foralloftheaccessiblemod-els.Differentsymbolsdenotethedifferentsources.ValuescalculatedfromthemodelsofAlibertetal.(1999)areplottedusingfilledcircles,whileothersareplottedusingopencircles.Plussignsindi-cateresultscalculatedforstarsevolvingthrough3
thehotandcooledgesoftheinstabilitystrip,withtherateofperiodchangeingeneralbeinglargeronthehotedgeoftheinstabilitystrip,i.e.,formoremassivestars.Largesymbolsdenotestarsofsolarmetallicity,Z=0.02,intermediate-sizedsymbolsdenotestarswithmetallicitiesofZ=0.01andZ=0.008,andsmallsymbolsdenotestarsofverylowmetallicity,Z=0.001andZ=0.004.Lineshavebeendrawntoenclosethoseregionswithinwhichtheresultsfordifferentcrossingmodesap-peartocluster.Sequencesofpointsindicatemod-elsforwhichthetimeresolutionwasfineenoughtocalculaterateofperiodchangeovertheentirecrossingoftheinstabilitystrip.
ThedistributionofdatapointsinFig.2sug-gestsavarietyofdifferentconclusionsregardingthemodels.First,thedifferentmodelsfortherapidfirstcrossingoftheinstabilitystripareinverygoodagreement,anddisplayverylittlevaria-tionwithmetallicity.Thefirstcrossingofthestripisarapidtransitionforallstars,regardlessofin-dividualdifferencesinrotationrate,etc.,andthatisevidentfromthemodels.Evidentlythecom-putationalcodesusedforcalculatingthephasesofshellhydrogenburninginstars,whileperhapsdifferingindetailfromonesourcetoanother,gen-eratenearlyidenticalresults,thesmallvariationinrateofperiodchangeatspecificpulsationpe-riodarisingfromthefinitewidthoftheinstabilitystripandthefactthatmoremassivestarscrossthestripatagreaterluminosityandatafasterratethanlessmassivestars.Forstarsinthefirstcrossingofthestrip,highrateofperiodincreaseatspecificpulsationperiodcorrespondstostarsonthehotedgeofthestrip,lowrateofperiodincreasetostarsonthecooledgeofthestrip.Negativeperiodchangesariseduringthesecondcrossingoftheinstabilitystrip,whichoccursdur-ingtheblueloopphaseofstellarevolutionfollow-ingtheonsetofcoreheliumburning.Theextentoftheblueloopcandependuponavarietyoffactors(see,forexample,Becker1985;Xu&Li2004),suchasmetallicity,thetreatmentofcoreover-shooting,andthedistributionofCNOelementsthroughoutthestar.Allfactorsaffecthowfarastarenterstheinstabilitystripduringcorehe-liumburning,andpresumablyaffectshowrapidlyitevolveswithinthestrip.Giventhepotentiallylargedifferencesininitialconditionsforsuchstarsasmain-sequenceobjects,forexample,largevari-ationsininitialrotationrate,onemightexpectrealstarstodisplaylargevariationsinhowfartheypenetratetheCepheidinstabilitystripmascoreheliumburningobjects.Somewhatunexpect-edly,therearealsoverylargevariationsamongthemodelsstarsaswell.
Evidently,metallicityplaysonlyaminorroleingoverningtherateatwhichstarstraversetheinstabilitystrip.Thereisasmuchdependenceonthespecificsofthestellarevolutionarycodeused.ThemodelsofAlibertetal.(1999),forexample,generatefasterratesofperioddecreasethandoothermodels,despitetheuseofcommonopacitytables.Modelsfromindividualsourcesareatleastinternallyconsistentintheirpredictionsforstarsofdifferentmassesandforstarsinallportionsofthesecondstripcrossing.Theratesofperioddecreaseduringindividualstripcrossingsarealsoverysimilartothevariationspredictedontheba-sisofmassdifferences,i.e,predictedvariationsinrateofperioddecreaseataspecificpulsationpe-riodaregenerallysmall,exceptforlongperiodCepheids.
Thethirdcrossingoftheinstabilitystripoc-cursduringthelatestagesofcoreheliumburn-ing,andgivesrisetoperiodincreases,forwhichthepredictedratesaredepictedinthetopportionofFig.2alongwiththoseforthefirstcrossing.Mostofthecommentsregardingthesecondcross-ingofthestripapplyequallytothethirdcrossing.Again,metallicityseemstoplayalessimportantroleinthepredictedratesofperiodincreasethandifferencesintheevolutionarycode.ThemodelsofAlibertetal.(1999)predictfasterratesofpe-riodchange(periodincreasesinthiscase)thandoothermodels,althoughwithlessconsistencyforstarsofdifferentmass.Theratesofperiodincreaseduringindividualstripcrossingsarealsosimilartothevariationspredictedonthebasisofmassdifferences,andpredictedvariationsintherateofperiodincreaseataspecificpulsationpe-riodaregenerallysmall.
Awell-knownproblemarisesforlow-massstarsinthesecondandthirdcrossingsoftheinstabilitystrip,sincetheblueloopphasesofevolutionarymodelsforstarsofsolarmetallicity,Z=0.02,donotenterthestripforM<4.75M⊙(seeAlibertetal.1999).Modelstarsoflowermetal-licitycantraversethestripatsmallermasses,butoftenonlyonthecooledge.Byinference,
4
mostclassicalCepheidsofnear-solarmetallicityshouldhavepulsationperiodsinexcessof∼31
tonepulsators.
2
days.Manymaybeover-
TheobservationalpictureisillustratedinFig.3,whichpresentsavailabledataonpe-riodchangesforover200Cepheids,asobtainedfromtheliterature(Berdnikov&Pastukhova1994a,b,1995;Berdnikovetal.1997;Turner1998;Berdnikov&Ignatova2000;Berdnikovetal.2003)andongoingresearchstudiesbytheauthors(e.g.,Berdnikov&Turner2004;Berdnikovetal.2004).TherelationshipsplottedinFig.3depictthere-gionswithinwhichthemodelcalculationsappeartocluster.
Ithasbeenpointedoutpreviously(e.g.,Szabados1983;Fernie1984;Turner1998)thattheobservedratesofperiodchangeinCepheidsaregenerallyagoodmatchtopredictionsfromstellarevolution-arymodels.ThedataofFig.3providefurtherconfirmationofthatconclusion.Moreover,threefurtherconclusionscanbereached.First,onceconsiderationistakenoftheexpectedchangesarisingfromevolutionthroughtheinstabilitystrip,theobservedperiodchangesinCepheidsareunlikelytocontainanysizablecomponentarisingfromanothersource.Thereareonlyafewexcep-tionstosuchaconclusion,andtheyareratherunusualobjectslikeV1496Aql(Berdnikovetal.2004),whichexhibitsperiodchangesdominatedbyrandomfluctuationsinpulsationperiod.
Second,theobservedperiodchangesinCepheidsdeviateinsmallbutimportantwaysfromwhatisexpectedaccordingtopredictionsbaseduponspe-cificstellarevolutionarymodels.ThemodelsofAlibertetal.(1999),forexample,predictfastersecondandthirdcrossingsofthestripthanthoseobserved,andatmuchdifferentrates.Incontrast,theobservedperiodchangesinCepheidsareverysimilarforobjectslikelytobeinthesecondandthirdcrossings.ThemodelsofClaret(2004)aremostconsistentwithobservationsinthatregard,butitisnecessarytohaveamorecompletemassgridofmodelsconstructedinthesamemannertomakeamoredetailedcomparison.
Third,therangeinobservedratesofperiod
5
changeformostCepheidsissmallerthanthatresultingfromacomparisonoftheresultsfromdifferentevolutionarymodels.Thatissomewhatsurprising,givenourpreviousdiscussionaboutpotentiallywidevariationsininitialconditionsforCepheidpredecessors.EvidentlyrealstarsaresimilarenoughintheirinternalcharacteristicsthattheyevolveatfairlysimilarratesthroughtheCepheidinstabilitystrip.
TheproportionsofCepheidsindifferentcross-ingmodesandindifferentperiodrangesinFig.3arealsoreasonablyconsistentwithevolutionaryexpectations.Forexample,starsinthefirstcross-ingoftheinstabilitystripduringshellhydrogenburningareevolvingabouttwoordersofmagni-tudefasterthanstarsinsecondandthirdcross-ings,sotheirrelativenumbersshouldbesmall.ThetwoCepheidsinFig.3undergoinglargeratesofperiodincreaseandfallinginthepredictedre-gionforfirstcrossersarePolaris(αUMi)andDXGem.Weassumethatbotharefirstcrossers,aswasalsoarguedforPolarisbyTurneretal.(2005).Moreover,theobservedrateofperiodchangeforPolarisisnowseentobeexactlywhatstellarevo-lutionarymodelspredictforastarlyingonthecooledgeoftheinstabilitystripforfirstcrossers.TheproportionofCepheidswithdetectableparabolictrendsintheirO–Cdataalsoincreasesnoticeablytowardsshortpulsationperiods,whichisagainconsistentwiththeevolutionaryexpec-tationthatthemostabundantpulsatorsmustbethoseevolvingmostslowlythroughtheinstabilitystrip.Thereisacuriousanomalyinthedistribu-tionofshortperiodCepheids,whereessentiallynovariablesarefoundtohaveratesofperiodchangeaspredictedforstarsinsecondandthirdcrossingsofthestripatP≤3.5days(logP≤0.55).Suchstarshaveprogenitormassesoflessthan∼4M⊙(Turner1996),wherestellarevolutionarymodelsforsolarmetallicitystarspredictthattheevolu-tionarytracksforcoreheliumburningstarsshouldnolongerenterthestrip.Theshortperiodcutoffintheobservationalsampleisthereforeconsistentwithexpectationsfromstellarevolutionarymod-els.ButtheexistenceofstarsofP≤3.5dayswithratesofperiodchangeroughlyanorderofmagnitudefasterthanpredictedforstarsinsec-ondandthirdcrossingsoftheinstabilitystripisnot.Theuncertaintiesintheobservedratesofpe-riodchangeintheanomalousobjectsaregenerally
muchtoosmalltoresolvetheanomalybyinvoking
systematicerrorsinthevaluesofP
˙.AnadditionalfactorthatcanbeimportantforshortperiodCepheidsisovertonepulsation.TheCepheidsintheobservationalsamplehaveallbeenassumedtobefundamentalmodepul-sators,andrequireadisplacementof+0.15inlogPtoestablishtheirproperlocationsinFig.3iftheyareovertonepulsators.Yettheapplica-tionofsuchcorrectionstoalloftheanomalousobjectsdoesnotaffecttheirdistributionsignifi-cantly;moststillfalloutsidetheregionofP
˙-spacepredictedforstarsinthesecondandthirdcross-ingoftheinstabilitystrip.Currentstellarevolu-tionarymodelsarethereforeunabletoexplaintheexistenceofsuchstars,whichsuggeststhatthemanneroftreatingthedetailsofstellarevolutionduringblueloopstagesisveryimportant(seealsoXu&Li2004).Thatisoneareawhereimprove-mentstotheobservationalsampleonCepheidpe-riodchangescanplayanimportantroleintestingtheresultsfromstellarevolutionarymodels.4.
P
˙asaFundamentalParameterInFig.3riodchangeP
˙thedispersionintheratesofpe-observedinlongperiodCepheids(P>10d)issmallerthanwhatisobservedforthecalculateddispersioninthatparameteramongdifferentstellarevolutionaryexpectP
˙models.Onemight
tocorrelatecloselywithlocationintheinstabilitystripforCepheidsinallstripcrossings,accordingtotheresultsofFig.1.Itisinformativetoexaminetheobservationaldatamorecloselytodetermineifthatisthecase.
Asafirststep,wenotethattheobservedratesofCepheidperiodchangeplottedinFig.3fallmainlywithinspecificbandsdelineatedbylinearmarginsofslope3.0separatedbyannituderangeinP
˙orderofmag-.Fig.4isaseparateplotofthedatathatdisplayssuchempiricallydefinedmar-gins.AllbuttwoofthelongperiodCepheidswithincreasingperiodsfallwithinthelowersetofmar-gins,asdothemajorityofshortperiodCepheidswithincreasingperiods.Cepheidswithdecreas-ingperiodsdisplayagreaterdispersioninP
˙thatmaybeintrinsic,ormaybecausedbylargerun-certaintiesinP
˙forthestars,particularlythosewithsmallratesofperiodchange.
TheanomalyforCepheidswithP≤3.5days
(logP≤0.55)isagainapparentinFig.4.AllCepheidsofshorterperioddisplayfasterratesofperiodchangethanistypicalofvariablespopu-latingthelowerband,andthereareanumberofstarsoflongerperiodalsofallinginthisregionofrapidperiodchange.Presumablythosestarsrep-resentCepheidsinfourthandfifthcrossingsoftheinstabilitystrip,withfasterassociatedratesofpe-riodchange.Multiplecrossingsoftheinstabilitystripappeartobepossibleforstarsinlatecoreheliumburningstages,dependingupontheCNOabundancesinthehydrogenburningshellsofsuchstars(Xu&Li2004).
Thefiniterangeinstellarsurfacetempera-tureforstarspopulatingtheinstabilitystripatconstantpulsationperiodimpliesdistinctdiffer-encesinpulsationefficiencythatshouldcoincidewithmarkeddifferencesinpulsationamplitudeforCepheidsofsimilarperiod.Onthehotedgeofthestriptheionizationzoneisjustbeginningtoreachdepthswherethepistonmechanismforpulsationbecomesefficient,solightamplitudesshouldbesmallbutincreasingwithdecreasingsurfacetem-peratures.Onthecooledgethelowersurfacetemperaturesareassociatedwithincreasedcon-vectiveenergytransportinthestar’souterlayers(Deupree1980),sopulsationamplitudesshouldalsobesmall.
ThefirststudyofCepheidamplitudesasafunctionofpositioninthestripbyKraft(1963)wasconsistentwiththatpicture,althoughsmallamplitudeCepheidswerefoundonlyonthehotedgeofthestrip.AllsubsequentamplitudemapsoftheinstabilitystripbyHofmeister(1967),Sandage&Tammann(1971),Payne-Gaposchkin(1974),Pel&Lub(1978),Turner(2001),andSandageetal.(2004)haveproducedsimilarre-sults,namelyasharprisetomaximumamplitudeonthehotedgeofthestripfollowedbyamoregradualdeclinetowardsthecooledge.
Cepheidamplitudesdisplayaperioddepen-denceaswellasadependenceuponlocationwithinthestrip,anaturalconsequenceofaneffecttiedtosurfacegravityaswellaspulsationefficiency.Inordertoeliminatethatfactorincharacteriz-ingCepheidperiodchanges,wehavenormalizedtheP
˙resultingvaluesofbluelightamplitudeandasfollows:(i)blueamplitudes∆Bwerestan-dardizedthroughtheratio∆B/∆B(max),where∆B(max)isthemaximumvalueof∆Bforthe
6
star’spulsationperiod,and(ii)P
˙wasadjustedtotheequivalentvalueforaCepheidwithapulsa-tionperiodof10dusingtheempirically-obtainedslopeplottedinFig.4.
Fig.5plotssuchdataforCepheidswith12d≤P≤40dandincreasingpulsationperiods(P≃20d).Theupperpartofthediagramplotstheindividualdata,whilethemiddlepartofthedia-gramplotsrunningmeansforthedata.Thelowerpartofthediagramisanalternateinterpretationofthesamedata,asdescribedbelow.SimilarplotsaregiveninFig.6forCepheidswith4d≤P≤8dandincreasingpulsationperiods(P≃6d),andinFig.7forCepheidswith4d≤P≤8dandde-creasingpulsationlargevaluesofP
˙periods(P≃6d).Recallthat
shouldcorrespondtothehotsideoftheinstabilitystrip,andsmallvaluestothecoolside.
Thedatafor20dCepheids(topportionofFig.5)displayatendencyforlargeamplitudeCepheidstohaveratesofperiodincreasetypicalofstarsly-ingnearthecenteroftheinstabilitystrip,withsmalleramplitudeCepheidsfallingtowardsthehotP
˙andcooledges(largerandsmallervaluesof,respectively).Thetrendismoreobviouswhenoneplotsrunningfive-pointmeansofthesamedata,asinthemiddlesectionofFig.5.TherearetwolongperiodvaluesofP
˙Cepheidswithanomalouslylarge
,SZCasandAQPup,whicharecon-ceivablyfifthcrossers.IftheyareomittedfromtherunningmeansandaveragesoverareincludedattheextremesofP
˙smallersamples
,oneobtainstheresultsinthelowerportionofFig.5,whicharetypicalofindependentcross-sectionalamplitude
mapsoftheinstabilitystrip.ThescatterinP˙val-uesevidentinthetopportionofFig.5isintrinsictothestars,andisnottheresultoflargeuncer-taintiesinthecalculatedvalues.PresumablythereareintrinsicphysicaldifferencesfromoneCepheidtoanotherthataccountforthescatter,asnotedearlier.Differencesininitialrotationvelocityfortheprogenitormain-sequencestarsmightbethesolefactor,giventhattheywouldgeneratesuffi-cientlylargevariationsintheabundancesoftheCNOelementsthroughoutthestartoaffecttheextentoftheblueloopstages(Xu&Li2004).Thedatafor6dCepheidswithperiodincreases(topportionofFig.6)aremorecomplicated.Itappearsthatthesampleconsistsoftwooverlap-pinggroupsofobjects,afeaturethatalsoappears
intherunningfive-pointmeansdisplayedinthemiddlesectionofFig.6.WeassumethateachgroupconsistsofCepheidsdisplayinganordermagnitude(factorof10)variationinP
˙of
valuesfromthehottocooledgesoftheinstabilitystrip,asdis-playedbythelongperiodCepheidsinFig.5,andusetheresultspresentedinthelowerportionofFig.5asatemplateforthelikelyvariationsativeamplitudewithP
˙inrel-forshortperiodCepheids.WhenthetwogroupsinFig.6areseparatedinsuchfashionandaveragesoverincludedatextremevaluesofP
˙smallersamplesare
foreachgroup,oneobtainstheresultsinthelowerportionofFig.6.ThesimplestexplanationfortheexistenceoftwogroupsamongtheshortperiodCepheidsistheex-istenceofhigherstripcrossingsamongthestars,namelyfifthcrossingsforCepheidsundergoingpe-riodincreases.
Similarresultsapplytothedatafor6dCepheidswithperioddecreases(Fig.7),whenanalyzedinsimilarfashion,despitethesmallersamplesize.ThetopportionofFig.7displaysexcessivescat-ter,muchlikethatinthetopportionofFig.6,withonlymarginalimprovementthroughrunningfive-pointmeans(middleportionofFig.7).Re-strictingthedatasetsasaboveproducesthere-sultsdepictedinthelowerportionofFig.7,whichsuggestsanoverlapbetweenCepheidsinsecondandfourthcrossingsoftheinstabilitystrip.Asnotedforlong-periodsicscatterinP
˙Cepheids,thereisanintrin-valuesthatisnottheresultoflargeuncertaintiesinthecalculatedvalues.SuchscattermakesitdifficulttouserateofperiodchangeforindividualCepheidstoidentifytheirexactlocationwithintheinstabilitystrip,althoughapproximateplacementsarepossibleinmostcases.
Theconclusionsreachedhere,whileadmittedlyspeculative,provideareasonableexplanationforthecharacteristicbehaviorofpulsationamplitudeandrateofperiodchangeforindividualCepheidsatspecificpulsationperiod.Asnotedearlier,theremaybefurthercomplicationsarisingfromthepresenceofovertoneCepheidsinthesample,buttheirnumbersshouldberelativelysmallinthepresentcase,exceptatshortperiods,andtheywouldnotaltertheobserveddistributionofdatapointssignificantly.AmorecomprehensivestudyincludingrecognizedovertoneCepheidsshouldbepossibleonceO–Cstudieshavebeencompletedforsuchvariables.
7
5.Discussion
OurintenthereistodemonstratethatrateofperiodchangeforaCepheidisausefulparame-terthatpermitsonetocharacterizethevariableintermsofspecificevolutionarytiononP
˙state.Informa-foraCepheid,inconjunctionwithitsknownpulsationperiodandlightamplitude,canbeusedtoidentifythestripcrossingmodefortheobjectaswellasitslikelylocationwithinthestrip,thelatterindependentofitsobservedreddening.TheparameterP
˙colorand
mayevenbeuse-fulforestablishingifaCepheidisafundamentalmodepulsatororanovertonepulsator,althoughweleavethatasafutureexercise.
IfweinterprettheresultsofFigs.5–7asagenericindicatorofhowpulsationamplitudevariesacrosstheinstabilitystrip,thenthewidththestripinP
˙of
atconstantperiod,whichamountsto∼1˙,mustencompassarangeof∼16inP
˙.2inlogP
.Ofthat,anintrinsicdispersioninlogP˙valuesamountingtoperhaps0.4–0.5,afactorof∼3,presumablyarisesfromactualinternaldif-ferencesintheCepheidsresultingfromdifferenthistoriesfortheirprogenitorstars.SpecificstellarevolutionarymodelspresentedsmallervariationinlogP
˙inFig.2predicta
thanwhatisobserved,whichmayreflectthesimplicityofthemodels.Inthatregard,observedratesofperiodchangeinCepheidscanplayanimportantroleasacheckonhowcloselystellarevolutionarymodelsmatchrealstars.UntilnowCepheidperiodchangeshavenotbeenusedforthatpurpose.
ThepresentstudywassupportedbyresearchfundingawardedthroughtheNaturalSciencesandEngineeringResearchCouncilofCanada,theRus-sianFoundationofBasicResearchthroughtheFederalProgram”Astronomy”oftheRussianFed-eration,andtheSmallResearchGrantsProgramoftheAmericanAstronomicalSociety,inpartbyfundingfromtheCeceliaPayneandSergeiGaposchkinMemorialFund.REFERENCES
Alibert,Y.,Baraffe,I.,Hauschildt,P.,&Allard,F.1999,A&A,344,551Andrievsky,S.M.,Kovtyukh,V.V.,Luck,R.E.,L´epine,J.R.D.,Bersier,D.,Maciel,W.J.,
Barbuy,B.,Klochkova,V.G.,Panchuk,V.E.,
&Karpischek,R.U.2002a,A&A,381,32Andrievsky,S.M.,Kovtyukh,V.V.,Luck,R.E.,L´epine,J.R.D.,Maciel,W.J.,&Beletsky,Yu.V.2002b,A&A,392,491Becker,S.A.1985,inCepheids:TheoryandOb-servations,IAUColloq.82,ed.B.F.Madore(Cambridge:CambridgeUniv.Press),p.104Becker,S.A.,Iben,I.,Jr.,&Tuggle,R.S.1977,ApJ,218,633Berdnikov,L.N.1994,Astron.Lett.,20,232Berdnikov,L.N.,&Ignatova,V.V.2000,inTheImpactofLarge-ScaleSurveysonPulsat-ingStarResearch,IAUColloq.176(alsoASPConf.Series,203),ed.L.Szabados&D.Kurtz,p.244Berdnikov,L.N.,&Pastukhova,E.N.1994a,As-tron.Lett.,20,479Berdnikov,L.N.,&Pastukhova,E.N.1994b,As-tron.Lett.,20,720Berdnikov,L.N.,&Pastukhova,E.N.1995,As-tron.Lett.,21,369Berdnikov,L.N.,&Turner,D.G.2004,Astron.Astrophys.Trans.,23,123Berdnikov,L.N.,Ignatova,V.V.,Pastukhova,E.N.,&Turner,D.G.1997,Astron.Lett.,23,177Berdnikov,L.N.,Mattei,J.A.,&Beck,S.J.2003,J.AAVSO,31,146Berdnikov,L.N.,Samus,N.N.,Antipin,S.V.,Ezhkova,O.V.,Pastukhova,E.N.,&Turner,D.G.2004,PASP,116,536Bono,G.,Caputo,F.,Cassisi,S.,Marconi,M.,Piersanti,L.,&Tornamb`e,A.2000,ApJ,3,955Claret,A.2004,A&A,424,919Deupree,R.G.1980,ApJ,236,225
Erleksova,G.E.,&Irkaev,B.N.1982,VariableStars,21,715Fernie,J.D.1967,AJ,72,1327
8
Fernie,J.D.1984,inObservationalTestsoftheStellarEvolutionTheory,IAUSymp.,105,ed.A.Maeder&A.Renzini(Dordrecht:D.Rei-del),p.441Fernie,J.D.1990,PASP,102,905
Glushkova,E.V.,Berdnikov,L.N.,&Turner,D.G.2005,inTheLight-TimeEffectinAstro-physics,ASPConf.Series,335,ed.C.Sterken(ASP:SanFrancisco),p.303Hofmeister,E.1967,Z.Astrophys.,65,194Iben,I.,Jr.1965,ApJ,142,1447Kraft,R.P.1961,ApJ,134,616
Kraft,R.P.1963,inBasicAstronomicalData,ed.K.Aa.Strand(Chichago:Univ.ChicagoPress),Chapt.21Lejeune,T.,&Schaerer,D.2001,A&A,366,538Maeder,A.,&Meynet,G.1988,A&AS,76,411Meynet,G.,&Maeder,A.2000,A&A,361,101Meynet,G.,&Maeder,A.2002,A&A,390,561Paranego,P.P.1958,Perem.Zvezdy,11,236Payne-Gaposchkin,C.H.1974,SmithsonianCon-trib.Ap.No.16Pel,J.W.&Lub,J.1978,inTheHRDiagram,the100thAnniversaryofHenryNorrisRussell,IAUSymp.,80,ed.A.G.D.Philip&D.S.Hayes(Dordrecht:D.Reidel),p.229Sandage,A.,&Tammann,G.A.1971,ApJ,167,293Sandage,A.,Tammann,G.A.,&Reindl,B.2004,A&A,424,43Salasnich,B.,Girardi,L.,Weiss,A.,&Chiosi,C.2000,A&A,361,1023Struve,O.1959,Sky&Telescope,18,309Szabados,L.1983,Ap&SS,96,185Turner,D.G.1996,JRASC,90,82Turner,D.G.1998,J.AAVSO,26,101
Turner,D.G.2001,OdessaAstron.Publ.,14,166
Turner,D.G.,&Berdnikov,L.N.2001,OdessaAstron.Publ.,14,170Turner,D.G.,&Berdnikov,L.N.2003,A&A,407,325Turner,D.G.,&Berdnikov,L.N.2004,A&A,423,335Turner,D.G.,&Burke,J.F.2002,AJ,124,2931Turner,D.G.,Horsford,A.J.,&MacMillan,J.D.1999,J.AAVSO,27,5Turner,D.G.,Billings,G.W.,&Berdnikov,L.N.2001,PASP,113,715Turner,D.G.,Savoy,J.,Derrah,J.,Abdel-SabourAbdel-Latif,M.,&Berdnikov,L.N.2005,PASP,117,207Xu,H.Y.,&Li,Y.2004,A&A,418,213
Fig.1.—ThetheoreticalHRdiagramillustrat-ingpost-main-sequenceevolutionarytracksforstarsof4,5,7,and10M⊙(Lejeune&Schaerer2001).IncludedistheobservationallocationoftheCepheidinstabilitystrip(dottedlines,fromTurner2001)andlinesofconstantstellarradius.
10
Fig.2.—PredictedratesofperiodchangeforstarscrossingtheCepheidinstabilitystripastiedtopublishedstellarevolutionarymodels.Themean-ingofthedifferentsymbolsisexplainedinthetext.Linesdenoteregionswithinwhichthepre-dictionsfromdifferentstellarevolutionarymodelsappeartocluster.Thedifferentcrossingsoftheinstabilitystripareidentified.
11
Fig.3.—Observedratesofperiodchange,alongwiththeircalculateduncertainties,forwell-studiedCepheidspossessingmanyyearsofO–Cdata.DottedlinesaretherelationsdepictedinFig.3,andthedifferentstripcrossingsareidenti-fied.
12
Fig.4.—ThedataofFig.3plottedalongwithsuggestedempiricaldelineationsoftheregionscor-respondingtoCepheidsindifferentcrossingsoftheinstabilitystrip,asidentified.
13
Fig.5.—NormalizedblueamplitudesofCepheidswith12d≤P≤40dandincreasingpulsationpe-riodsasafunctionofnormalizedrateofperiodchange(uppersection).Themiddlesectiondis-playsrunningfive-pointmeansforthedata,andthelowersectionadjustedandextendedmeansofthedata.
14
Fig.6.—NormalizedblueamplitudesofCepheidswith4d≤P≤8dandincreasingpulsationperiodsasafunctionofnormalizedrateofperiodchange(uppersection).Themiddlesectiondisplaysrun-ningfive-pointmeansforthedata,andthelowersectionadjustedandextendedmeansofthedataafterjudiciousseparationoftheoverlappingsam-plesusingtheresultsofFig.5asatemplate.
15
Fig.7.—NormalizedblueamplitudesofCepheidswith4d≤P≤8danddecreasingpulsationpe-riodsasafunctionofnormalizedrateofperiodchange(uppersection).Themiddlesectiondis-playsrunningfive-pointmeansforthedata,andthelowersectionadjustedandextendedmeansofthedataafterjudiciousseparationoftheoverlap-pingsamplesasinFig.6.
16
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务