(12)发明专利申请
(10)申请公布号 CN 110676419 A(43)申请公布日 2020.01.10
(21)申请号 201910830388.0(22)申请日 2019.09.04
(71)申请人 绍兴文理学院
地址 312000 浙江省绍兴市环城西路508号(72)发明人 葛烨倩 郑怡筱
(74)专利代理机构 绍兴市寅越专利代理事务所
(普通合伙) 33285
代理人 胡国平(51)Int.Cl.
H01M 2/16(2006.01)H01M 2/14(2006.01)B32B 27/02(2006.01)B32B 27/12(2006.01)B32B 7/08(2019.01)B32B 27/30(2006.01)
(54)发明名称
一种耐高温层合增强隔膜材料(57)摘要
本发明公开了一种耐高温层合增强隔膜材料,基于高压静电纺丝设备,采用滚筒接收器高速下收集的高取向PAN纳米纤维层,和无序PVDF纳米纤维膜组成;将无序PVDF纤维膜作为中间层,结合上下两层0°/90°加固排列的PAN纤维膜,再经过热压处理后形成0°PAN/PVDF/90°PAN取向增强复合隔膜。本发明所制得的隔膜材料,具有高孔隙率(70%-85%),横纵向拉伸性提高2-3倍,以及较好的耐热性能,具体为160℃下保持良好尺寸并具有过温保护功能,从而提高锂离子电池的电化学稳定性能以及安全性能。
B32B 33/00(2006.01)B32B 37/02(2006.01)B32B 37/06(2006.01)B32B 37/10(2006.01)B32B 3/24(2006.01)B32B 37/15(2006.01)B32B 7/025(2019.01)D04H 1/43(2012.01)D04H 1/4318(2012.01)D04H 1/4374(2012.01)D04H 1/44(2012.01)D04H 1/54(2012.01)D04H 1/728(2012.01)
权利要求书1页 说明书4页 附图1页
CN 110676419 ACN 110676419 A
权 利 要 求 书
1/1页
1.一种耐高温层合增强隔膜材料,其特征在于:包括基于高压静电纺丝设备,采用滚筒接收器100-900r/min接收速度下收集的高取向PAN纳米纤维层,和无序PVDF纳米纤维膜组成;将无序PVDF纤维膜作为中间层,结合上下两层0°/90°加固排列的PAN纤维膜,再经过热压处理后形成0°PAN/PVDF/90°PAN取向增强复合隔膜。
2.根据权利要求1所述的一种耐高温层合增强隔膜材料的制备方法,其特征在于,具体步骤为:
1)将聚丙烯腈(PAN)溶于有机溶剂中,经充分搅拌后得到纺丝液,调节相应的纺丝速率、接收距离、电压进行纺丝,在转速为900r/min滚筒中接收纺制第一层和第三层高取向PAN纳米纤维膜;
2)将聚偏氟乙烯(PVDF)溶于有机溶剂中,经充分搅拌后得到纺丝液,调节相应的纺丝速率、接收距离、电压进行纺丝,在转速为100r/min滚筒中接收制得第二层无序PVDF纳米纤维膜;
3)将三层纺制的材料经过烘箱烘干,最后在热压机上热压得到最终的0°PAN/PVDF/90°PAN取向增强复合隔膜。
3.根据权利要求2所述的制备过程,其特征在于:步骤1-2中的有机溶剂均为N,N-二甲基甲酰胺。
4.根据权利要求2所述的制备过程,其特征在于:步骤1中的PAN浓度为11%;步骤2中的PVDF浓度为14%。
5.根据权利要求2所述的制备过程,其特征在于:步骤1中搅拌时间为20-24h;步骤2中搅拌时间为40-48h。
6.根据权利要求2所述的制备过程,其特征在于:步骤1中纺丝工艺参数为纺丝速率0.6/h,接收距离为20cm,电压为20kV,同时采用环境温度20-25℃,环境湿度30-40%。
7.根据权利要求2所述的制备过程,其特征在于:步骤2中纺丝工艺参数为纺丝速率0.6/h,接收距离为15cm,电压为14kV,同时采用环境温度20-25℃,环境湿度30-40%。
8.根据权利要求2所述的制备过程,其特征在于:步骤3中干燥的方式为真空干燥,干燥温度为65-75℃,干燥时间6-12h,热压条件是热压强度2MPa,热压温度35℃,热压时间50-70s。
9.根据权利要求2所述的制备过程,其特征在于:步骤3中三层纺制的材料纺制过程为:PAN纺丝液在高速滚筒接收纺制第一层,到达1/3后进行PVDF第二层低速滚筒接收,纺制1/3后调整膜方向后再第三层高取向PAN纳米纤维纺制;其中每一层厚度分别占1/3,所得耐高温层合增强隔膜材料厚度为20-70μm。
2
CN 110676419 A
说 明 书
一种耐高温层合增强隔膜材料
1/4页
技术领域
[0001]本发明涉及锂离子电池隔膜技术领域,具体为一种耐高温层合增强隔膜材料。背景技术
[0002]国内新能源观念的推广促进动力二次电池的快速发展。二次电池隔膜作为避免电池正极和负极接触短路的重要组成部分备受重视。高性能的隔膜材料不仅能保证电池性能的发挥,增加循环寿命和容量稳定性,还能为电池在特殊环境下正常使用提供安全保障。商用隔膜一开始主要是以聚烯烃通过熔融拉伸方式制得,并且市场被韩国、日本、美国等垄断,到目前国内自主开发湿法和干法隔膜,并且产量逐年增加。聚烯烃聚合物价格较低且有良好的力学性能和化学稳定性,但其孔隙率低、浸润性差,导致电池内阻高,不利于高倍率充放电,此外此类隔膜熔融温度低、耐热性差,长时间工作产生的高温会使隔膜融缩,引起正负极材料短路。为此,目前仍需要开发综合性能优良的隔膜材料满足日益增长的新能源电池需求。
[0003]近年来通过静电纺丝技术制备纳米纤维隔膜的研究受到人们关注。静电纺丝在湿法隔膜的基础上将纤维尺度大幅度降低,形成密集的微纳米级孔隙,隔膜孔隙率大大提高,为离子穿梭提供高效的通道,且纳米尺度效应产生的较大表面能使其具有良好的吸液性和保液性等优点,能改善目前商用隔膜的缺点,具有很好的应用前景。然而静电纺丝隔膜最大的问题是机械性能欠佳,为此研究者通过改变聚合物品种或者采用多层等方式进行改性。[0004]例如,专利号为:CN103996813A,名为“一种双向增强型静电纺锂离子电池隔膜的制备方法及装置”,由平行电极在电极所在平面旋转状态下制得取向纤维,其纵横向上的拉伸断裂强度大,可在同一静电纺丝装置上完成。但该专利中所述的纤维在生产工艺过程中可能会受到电场之间的干扰而不能有效高取向排列,此外材料未经过热压工序会导致隔膜材料过于蓬松,结构不紧密。发明内容
[0005]本发明的目的在于克服现有隔膜性能的不足,基于静电纺丝方法构筑取向多层纳米纤维隔膜,提供了一种具有高空隙率,强度较高,耐高温的层合隔膜材料,解决纳米纤维隔膜机械性能欠佳的问题。
[0006]本发明提供的技术方案为:一种耐高温层合增强隔膜材料,基于高压静电纺丝设备,采用滚筒接收器高速下收集的高取向PAN纳米纤维层,和无序PVDF纳米纤维膜组成;无序PVDF纤维膜作为中间层,结合上下两层0°/90°加固排列的PAN纤维膜,再经过热压处理后形成0°PAN/PVDF/90°PAN取向增强复合隔膜。将PAN纺丝液进行纺丝,通过高速滚筒接收纺制第一层和第三层高取向PAN纳米纤维膜;将PVDF纺丝液纺丝,低速滚筒接收制得第二层无序PVDF纳米纤维膜;最终得到0°PAN/PVDF/90°PAN取向增强复合隔膜。[0007]其中隔膜材料由200-500nm的纤维组成,形成致密的微孔,孔隙率较高可达70-85%。其次由于PAN纳米纤维得到了较好的牵伸而伸直,在被牵伸方向材料的强度得到提
3
CN 110676419 A
说 明 书
2/4页
升。同时该隔膜材料还具有极好的热尺寸稳定性,这是由于PAN具有较好的热稳定性,PAN作为第一层和第三层可以在较高温度下有效保持隔膜尺寸,不使之变形,在充放电过程中保证较好的循环稳定性和安全性能。[0008]本发明方案中,所述的一种耐高温层合增强隔膜材料,其制备步骤如下:[0009]1)将聚丙烯腈(PAN)溶于有机溶剂中,经充分搅拌后得到纺丝液,调节相应的纺丝速率、接收距离、电压进行纺丝,在转速为900r/min滚筒中接收纺制第一层和第三层高取向PAN纳米纤维膜;
[0010]2)将聚偏氟乙烯(PVDF)溶于有机溶剂中,经充分搅拌后得到纺丝液,调节相应的纺丝速率、接收距离、电压进行纺丝,在转速为100r/min滚筒中接收制得第二层无序PVDF纳米纤维膜;
[0011]3)将PAN纺丝液在高速滚筒接收纺制第一层,到达1/3后进行PVDF第二层低速滚筒接收,纺制1/3后调整膜方向后再第三层高取向PAN纳米纤维纺制。将纺制的材料经过烘箱烘干,最后在热压机上热压得到最终的0°PAN/PVDF/90°PAN取向增强复合隔膜。[0012]优先地,所述步骤1和2中的有机溶剂均为N,N-二甲基甲酰胺。[0013]优先地,所述步骤1中的PAN浓度为10%,纺丝工艺条件为纺丝速率0.6-1mL/h,接收距离为15-20cm,电压为20kV,滚筒接收速度为900r/min,环境温度20-25℃,环境湿度30-40%;步骤2中的PVDF浓度为14%,纺丝工艺条件为纺丝速率0.6-0.8mL/h,接收距离为15-20cm,电压为14kV,滚筒接收速度为100r/min(低速),环境温度20-25℃,环境湿度30-40%。[0014]优先地,所述步骤1中搅拌时间为20-24h;步骤2中搅拌时间为40-48h,干燥的方式为真空干燥,干燥温度为65-75℃,干燥时间6-12h。热压条件是热压强度2MPa,热压温度35℃,热压时间50-70s。[0015]优先地,所述步骤3中耐高温层合增强隔膜材料厚度为20-70μm,每一层厚度分别占1/3。
[0016]有益效果
[0017]采用上述技术方案后,本发明一种耐高温层合增强隔膜材料与现有熔融拉伸隔膜材料相比,具备以下优点:
[0018]1.隔膜材料由200-500nm尺度的纤维组成,形成致密的孔隙,为锂离子提供通道,使隔膜具有高孔隙率和吸液率的优点。
[0019]2.采用高速滚筒接收高取向的PAN纳米纤维隔膜和无序的PVDF纳米纤维隔膜,以正交排列复合得到增强0°PAN/PVDF/90°PAN复合纳米纤维材料,能有效改善纳米纤维隔膜机械性能,提高2-4倍。
[0020]3.采用热稳定性好的PAN作为第一层和第三层,能有效提供隔膜的热尺寸稳定性,在160℃仍保持稳定尺寸,且中间层的PVDF在160℃后发生熔融,形成封闭层,避免正负极进一步工作而导致温度过高产生电池起火爆炸等隐患,提高锂离子电池的电化学性能以及安全性能。
附图说明
[0021]图1中(a)、(b)、(c)分别为滚筒速度为300、600、900r/min时纺制的PAN纤维膜SEM图;
4
CN 110676419 A[0022][0023]
说 明 书
3/4页
图2为0°PAN/PVDF/90°PAN层合纤维膜的截面SEM图;图3为Celgard 2400、0°PAN/PVDF/90°PAN层合纳米纤维膜热尺寸稳定性;
具体实施方式
[0024]实施例
[0025]本申请涉及一种耐高温层合增强隔膜材料的制备方法,基于静电纺丝方法构筑取向多层纳米纤维隔膜,包括如下步骤:1、高取向PAN纳米纤维隔膜的制备并干燥;2、滚筒接收器低速下收集的无序PVDF纳米纤维膜的制备并干燥;3、将制备得到的无序PVDF纤维膜作为中间层,结合上下两层0°/90°排列的PAN纤维膜形成取向增强复合隔膜。[0026]所用原料如下:[0027]聚丙烯腈(PAN,上海金山石化公司,分子量为150,000),N,N-二甲基甲酰胺(DMF,≥99.5%,国药集团化学试剂有限公司),聚丙烯隔膜(Celgard2400),聚偏氟乙烯(法国Arkema公司,Kynar761,Mw=600,000)0°PAN/PVDF/90°PAN复合纳米纤维隔膜[0028]1、PAN纳米纤维隔膜的具体制备过程:[0029]配制质量分数为10%的PAN纺丝液,将2gPAN溶解与18gDMF中,在磁力搅拌器上充分搅拌得到均一纺丝液。采用静电纺丝设备进行纺丝,在滚筒表面贴好铝箔纸作为接收器,用体积为10ml的针管吸取2.4ml纺丝溶液,固定在注射泵上,调节针头到接收板的距离为15cm。针头接高压电源正极,滚筒接地。调节纺丝速率为0.6mL/h,电压为20kV。为获得高取向PAN纳米纤维隔膜,设置滚筒转速为900r/min,纺第一层取向纤维层。同时采用环境温度25℃,环境湿度40%。[0030]2、配制无序PVDF纳米纤维隔膜
[0031]首先配制质量分数为12%的PVDF纺丝液,将2.4gPVDF溶解与17.6gDMF中,在磁力搅拌器上充分搅拌得到均一纺丝液。采用静电纺丝设备进行纺丝,在滚筒表面贴好铝箔纸作为接收屏,用体积为10ml的针管吸取2.4ml纺丝溶液,固定在注射泵上,调节针头到接收板的距离为15cm。针头接高压电源正极,滚筒接地。调节纺丝速率为0.6mL/h,电压为14kV,设置滚筒转速为100r/min(低速即可,保证PVDF纳米纤维隔膜为无序状态),纺第二层纤维层。同时采用环境温度25℃,环境湿度40%。[0032]3、配制0°PAN/PVDF/90°PAN复合纳米纤维材料[0033]将纤维膜揭下,旋转90°方向,用同样的PAN纺丝液以及纺丝参数纺制第三层纤维层。纺好后的纤维膜放于平板热压机上,用强度2MPa,温度35℃,时间60s进行热压,最后放入烘箱中75℃保存待用。[0034]比较例
[0035]PAN纳米纤维隔膜(滚筒转速为300,600,900r/min):[0036]首先配制质量分数为10%的PAN纺丝液。采用静电纺丝设备进行纺丝,用针管吸取7.2ml的纺丝溶液,调节针头到接收板的距离为15cm。针头接高压电源正极,滚筒接地。调节纺丝速率为0.6mL/h,电压为20kV。
[0037]为比较取向改性对材料的拉伸性能影响,设置和比较滚筒转速分别为300,600,900r/min的PAN纤维膜(标记为PAN-300,PAN-600,PAN-900),纺丝后热压,最后放入烘箱中65-75℃烘干,保存待用。
5
CN 110676419 A[0038]
说 明 书
4/4页
配制无序PVDF纳米纤维隔膜:
[0039]首先配制质量分数为12%的PVDF纺丝液。采用静电纺丝设备进行纺丝,在滚筒表面贴好铝箔纸作为接收器,用体积为10ml的针管吸取7.2ml纺丝溶液,固定在注射泵上,调节针头到接收板的距离为15cm。针头接高压电源正极,滚筒接地。调节纺丝速率为0.8mL/h,电压为14kV,设置滚筒转速为100r/min(标记为PVDF),纺丝后热压,最后放入烘箱中65-75℃烘干,保存待用。
[0040]其中不同滚筒转速下的PAN纳米膜、PVDF纳米膜、0°PAN/PVDF/90°PAN层合纤维膜的拉伸断裂强度如表1所示(表1具体为300、600、900r/min制得的PAN、PVDF、0°PAN/PVDF/90°PAN层合纳米纤维膜纵横向拉伸性能)。
[0041]隔膜孔隙率如表2所示(表2具体为Celgard 2400、0°PAN/PVDF/90°PAN层合纳米纤维膜孔隙率)。
[0042]表1隔膜纵横向拉伸性能
[0043]
[0044]
隔膜PAN-300纵向(Mpa)5.16横向(Mpa)6.33表2隔膜孔隙率
PAN-6007.34.15PAN-9008.864.56PVDF13.2111.450oPAN/PVDF/90oPAN11.9110.96
[0045]
[0046]
综上,本发明制备的层合增强二次电池隔膜材料不仅可以保证隔膜的孔隙率、热
学性能,还可以提高隔膜的机械性能,在动力二次电池的领域具有很好的应用前景。[0047]以上所述依据实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明思想的范围内,进行多样的变更以及修改。本项使用新型的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其保护的范围。
6
CN 110676419 A
说 明 书 附 图
1/1页
图1
图2
图3
7
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务