一、选择题
1. 若实数x,y满足A.
B.8
C.20
22
,则(x﹣3)+y的最小值是( )
D.2
上,则
=( )
2. △ABC中,A(﹣5,0),B(5,0),点C在双曲线 A.
B.
C.
D.±
3. 已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是( ) A.1
B.3
C.5
D.9
4. 已知x,y,z均为正实数,且2xlog2x,2ylog2y,2zlog2z,则( )
A.xyz B.zxy C.zyz D.yxz 5. 满足集合M⊆{1,2,3,4},且M∩{1,2,4}={1,4}的集合M的个数为( ) A.1
B.2
C.3
D.4
6. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A. 2 B.4 C.
48 D. 33
【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.
7. 设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )
第 1 页,共 17 页
A.y2=4x或y2=8x B.y2=2x或y2=8x
C.y2=4x或y2=16x D.y2=2x或y2=16x
8. 若关于x的不等式|x1||x2|m70的解集为R,则参数m的取值范围为( ) A.(4,) B.[4,) C.(,4) D.(,4]
【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.
(1i)29. 复数的值是( )
3i13131313A.i B.i C.i D.i
44445555【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.
10.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A.36种 B.38种 C.108种
D.114种
二、填空题
11.满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A的个数是 .
12.直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为 .
13.函数fxlog2x在点A1,2处切线的斜率为 ▲ .
14.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x.给出如下结论:
①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函
kk+1
数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2,2)”;其中所有正确
结论的序号是 .
15.阅读下图所示的程序框图,运行相应的程序,输出的n的值等于_________.
16.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且 开始仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)
【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.
S5,T1ST?f(x)=ex﹣1图象上任一于点 n1三、解答题
17.已知P(m,n)是函授
是否SS4输出 n结束T第 2T页,共 17 2 页 nn1(Ⅰ)若点P关于直线y=x﹣1的对称点为Q(x,y),求Q点坐标满足的函数关系式 (Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=y=h(x)图象上时,公式变为
=|s﹣ex﹣1﹣1|+|t﹣ln(t﹣1)|,(s∈R,t>0)的最小值.
18.【南师附中2017届高三模拟二】如下图扇形AOB是一个观光区的平面示意图,其中AOB为
,当点M在函数
,请参考该公式求出函数ω(s,t)
2,半3径OA为1km,为了便于游客观光休闲,拟在观光区内铺设一条从入口A到出口B的观光道路,道路由圆弧
AC、线段CD及线段BD组成.其中D在线段OB上,且CD//AO,设AOC.
(1)用表示CD的长度,并写出的取值范围; (2)当为何值时,观光道路最长?
19.已知、、是三个平面,且c,a,b,且abO.求证:、 、三线共点.
第 3 页,共 17 页
20.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中 随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第 5组[40,45],得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组 各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组 至少有一名志愿者被抽中的概率.
ABCD,AB//DC, 21.(本小题满分12分)如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A^底面AB^AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明:B1C1^面CEC1;
(II)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为2,求线段AM的长. 6第 4 页,共 17 页
BB1CAEC1A1D
D1
22.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若PA=AB,求PB与AC所成角的余弦值; (Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.
第 5 页,共 17 页
第 6 页,共 17 页
南雄市实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1. 【答案】A
【解析】解:画出满足条件的平面区域,如图示:
,
由图象得P(3,0)到平面区域的最短距离dmin=
22
∴(x﹣3)+y的最小值是:
,
.
故选:A.
【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.
2. 【答案】D 【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线∴A与B为双曲线的两焦点,
上,
根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10, 则故选:D.
=
=±
=±.
【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.
3. 【答案】C
【解析】解:∵A={0,1,2},B={x﹣y|x∈A,y∈A}, ∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2; 当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1; 当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;
第 7 页,共 17 页
∴B={﹣2,﹣1,0,1,2},
∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个. 故选C.
4. 【答案】A 【解析】
考
点:对数函数,指数函数性质. 5. 【答案】B
【解析】解:∵M∩{1,2,4}={1,4}, ∴1,4是M中的元素,2不是M中的元素. ∵M⊆{1,2,3,4}, ∴M={1,4}或M={1,3,4}. 故选:B.
6. 【答案】B
第 8 页,共 17 页
7. 【答案】 C
2
【解析】解:∵抛物线C方程为y=2px(p>0),
∴焦点F坐标为(,0),可得|OF|=, ∵以MF为直径的圆过点(0,2), ∴设A(0,2),可得AF⊥AM, Rt△AOF中,|AF|=
=
,
∴sin∠OAF==,
∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,
∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,
∵|MF|=5,|AF|=
∴=,整理得4+=,解之可得p=2或p=8
第 9 页,共 17 页
22
因此,抛物线C的方程为y=4x或y=16x.
故选:C.
方法二:
2
∵抛物线C方程为y=2px(p>0),∴焦点F(,0),
=,
设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣, 因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为
由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,
2
即M(5﹣,4),代入抛物线方程得p﹣10p+16=0,所以p=2或p=8. 22
所以抛物线C的方程为y=4x或y=16x.
故答案C.
【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.
8. 【答案】A
9. 【答案】C
(1i)22i2i(3i)26i13【解析】i.
3i3i(3i)(3i)1055第 10 页,共 17 页
10.【答案】A
【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法. 根据分步计数原理,共有3×2×3=18种分配方案.
②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案. 由分类计数原理,可得不同的分配方案共有18+18=36种, 故选A.
【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.
二、填空题
11.【答案】 4 .
【解析】解:由题意知,
满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A有: {2,3},{2,3,1},{2,3,4},{2,3,1,4}, 故共有4个, 故答案为:4.
12.【答案】
.
【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2), 故斜率为
=,
,
∴由斜截式可得直线l的方程为故答案为
.
【点评】本题考查直线的斜率公式,直线方程的斜截式.
113.【答案】
ln2【解析】
11kf1 试题分析:fxxln2ln2考点:导数几何意义
第 11 页,共 17 页
【思路点睛】(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 14.【答案】 ①②④ .
【解析】解:∵x∈(1,2]时,f(x)=2﹣x. ∴f(2)=0.f(1)=f(2)=0. ∵f(2x)=2f(x),
kk
∴f(2x)=2f(x).
①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确; ②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0. 若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0. …
mm+1
一般地当x∈(2,2),
则∈(1,2],f(x)=2
m+1
﹣x≥0,
从而f(x)∈[0,+∞),故正确;
③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,
nn+1nnn
∴f(2+1)=2﹣2﹣1=2﹣1,假设存在n使f(2+1)=9, nn
即2﹣1=9,∴2=10,
∵n∈Z,
n
∴2=10不成立,故错误;
④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数, ∴若(a,b)⊆(2,2
k
k+1
)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.
故答案为:①②④.
15.【答案】6
【解析】解析:本题考查程序框图中的循环结构.第1次运行后,S9,T2,n2,ST;第2次运行后,
S13,T4,n3,ST;第3次运行后,S17,T8,n4,ST;第4次运行后,S21,T16,n5,ST;第5次运行后,S25,T32,n6,ST,此时跳出循环,输出结果n6程
序结束. 16.【答案】48
第 12 页,共 17 页
【解析】
三、解答题
17.【答案】
【解析】解:(1)因为点P,Q关于直线y=x﹣1对称,所以
.
解得.又n=em﹣1
,所以x=1﹣e(y+1)﹣1,即y=ln(x﹣1).
x1
(2)ω(s,t)=|s﹣e﹣﹣1|+|t﹣ln(t﹣1)﹣1|
=
,
令u(s)=.
则u(s),v(t)分别表示函数y=e由(1)知,umin(s)=vmin(t).
x1
而f′(x)=e﹣,令f′(s)=1得s=1,所以umin(s)=
x﹣1
,y=ln(t﹣1)图象上点到直线
x﹣y﹣1=0的距离.
.
.
故
【点评】本题一方面考查了点之间的轴对称问题,同时利用函数式的几何意义将问题转化为点到直线的距离,然后再利用函数的思想求解.体现了解析几何与函数思想的结合.
第 13 页,共 17 页
18.【答案】(1)CDcos时,观光道路最长.
3sin,0,;(2)设当时,L取得最大值,即当6633CDODCO
sinCODsinDCOsinCDO233232sin CDsincossin,OD3333233ODOBsin1sin0
3233CDcossin,0,
33【解析】试题分析:(1)在OCD中,由正弦定理得:(2)设观光道路长度为L, 则LBDCD弧AC的长 = 12333sincossin= cossin1,0, 3333Lsin3cos1 3由L0得:sin列表: 3,又 0,6623 6 0 极大值 0, 6 + ↗ , 63 - ↘ L L 当6时,L取得最大值,即当6时,观光道路最长.
考点:本题考查了三角函数的实际运用
点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。多数题型为选择题或填空题;其次是三角函数式的恒等变形。如运用三角公式进行化简、求值解决简单的综合题等。除在填空题和选择题出现外,解答题的中档题也经常出现这方面内容。
第 14 页,共 17 页
另外,还要注意利用三角函数解决一些应用问题 19.【答案】证明见解析. 【解析】
考点:平面的基本性质与推论. 20.【答案】(1)3,2,1;(2)【解析】111]
7 . 10试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有10种情况,其中第组的名志愿者B1,B2至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1
(2)记第3组的3名志愿者为A1,B2,则从5名志愿者中抽取2名志愿者1,A2,A3,第4组的2名志愿者为B有(A1,B1),(A1,A2),(A1,A3),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A1,B2),2,A3),(A3,B2),(B共10种,其中第4组的2名志愿者B1,B2至少有一名志愿者被抽中的有(A1,B1),(A2,B2),(A1,B2),(A2,B1),
(A3,B1),(A3,B2),(B1,B2),共7种,所以第4组至少有一名志愿都被抽中的概率为
考点:1、分层抽样的应用;2、古典概型概率公式. 21.【答案】
7. 10【解析】【命题意图】本题考查直线和平面垂直的判定和性质、直线和平面所成的角、两点之间的距离等基础知识,意在考查空间想象能力和基本运算能力
第 15 页,共 17 页
zBB1CAEC1A1yDxD1
22.【答案】
第 16 页,共 17 页
【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD, 又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A 所以BD⊥平面PAC 所以BO=1,AO=OC=坐标系O﹣xyz,则
,
,0),B(1,0,0),C(0,
(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,
以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角P(0,﹣,2),A(0,﹣ 所以=(1,,﹣2),
,0)
,设
=0, 令
, ,
,
设PB与AC所成的角为θ,则cosθ=|(III)由(II)知则则所以
设平面PBC的法向量=(x,y,z)
平面PBC的法向量所以同理平面PDC的法向量所以所以PA=
=0,即﹣6+.
=0,解得t=
,
,因为平面PBC⊥平面PDC,
【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
第 17 页,共 17 页
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务