sin(a+b)公式
三角函数是数学中属于初等函数的超越函数的函数。它们的本质是任何一组角度和比率集合的变量之间的映射。通常的三角函数定义在平面直角坐标系中。
它的域是整个实数域。另一个定义是直角三角形,但不是完全的。现代数学把它们描述为无穷序列的极限和微分方程的解,把它们的定义推广到复数。
三角函数公式似乎是许多复杂的,但只要我们掌握三角函数的本质和内在规律,我们就会发现三角函数的各种公式之间有很强的联系。掌握三角函数的内在规律和本质,也是学好三角函数的关键。
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
先2113,建立直角坐标系,在笛卡尔坐标系.y中制5261作单位圆O,制作角度a、b和-B,使得4102角度a的开口边缘为1653Ox,相交圆O在点P1,端部相交圆O在点。P2,角度B的开始边缘是OP2,结束相交圆O在点P3,角度-B的开始边缘是OP1,结束相交圆O在点P4。
P1(1,0) 、P2(cosa,sina) 、P3(cos(a+b),sin(a+b)) 、P4(cos(-b),sin(-b))
由P1P3=P2P4及两点间距离公式得:
[cos(a+b)-1]^2+sin^2(a+b) =[cos(-b)-cosa]^2+[sin(-b)-sina]^2
展开整理得
2-2cos(a+b) =2-2(cosacosb-sinasinb)
所以cos(a+b)=cosacosb-sinasinb
根据诱导公式sin(π/2-a)=cosa
得sin(a+b)=cos[π/2-(a+b)]=sinacosb+cosasinb
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等
其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务