2021年{某某}小学
小 学 数 学 学 习 资 料
教 师:年 级:日 期:1 / 7
仅供参考
星火教育一对一辅导教案 学生姓名 性别 年级 四年级 学科 数学 第( )次课 授课教师 上课时间 20XX年7月日 共( )次课 教学课题 巧妙求和 课时:3课时 教学目标 教学重点与难点 教学过程 一、知识要点 若干个数排成一列称为数列。数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。 从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。 在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 二、精讲精练 【例题1】 有一个数列:4,10,16,22.…,52.这个数列共有多少项? 2 / 7
仅供参考
【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。 项数=(52-4)÷6+1=9,即这个数列共有9项。 练习1: 1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项? 2.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项? 3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项? 【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少? 【思路导航】这个等差数列的首项是3.公差是4,项数是100。要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。 第100项=3+4×(100-1)=399. 练习2: 1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少? 2.求1.4,7,10……这个等差数列的第30项。 3.求等差数列2.6,10,14……的第100项。 3 / 7
仅供参考
【例题3】有这样一个数列:1.2.3.4,…,99,100。请求出这个数列所有项的和。 【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。 1+2+3+…+99+100=(1+100)×100÷2=5050 上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和: 等差数列总和=(首项+末项)×项数÷2 这个公式也叫做等差数列求和公式。 练习3: 计算下面各题。 (1)1+2+3+…+49+50 (2)6+7+8+…+74+75 4 / 7
仅供参考
(3)100+99+98+…+61+60 【例题4】求等差数列2,4,6,…,48,50的和。 【思路导航】这个数列是等差数列,我们可以用公式计算。 要求这一数列的和,首先要求出项数是多少:项数=(末项-首项)÷公差+1=(50-2)÷2+1=25 首项=2.末项=50,项数=25 等差数列的和=(2+50)×25÷2=650. 练习4: 计算下面各题。 (1)2+6+10+14+18+22 (2)5+10+15+20+…+195+200 5 / 7
仅供参考
(3)9+18+27+36+…+261+270 【例题5】计算(2+4+6+…+100)-(1+3+5+…+99) 【思路导航】容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。 进一步分析还可以发现,这两个数列其实是把1 ~ 100这100个数分成了奇数与偶数两个等差数列,每个数列都有50个项。因此,我们也可以把这两个数列中的每一项分别对应相减,可得到50个差,再求出所有差的和。 (2+4+6+…+100)-(1+3+5+…+99) =(2-1)+(4-3)+(6-5)+…+(100-99) 6 / 7
仅供参考
=1+1+1+…+1 =50 练习5: 用简便方法计算下面各题。 (1)(2001+1999+1997+1995)-(2000+1998+1996+1994) (2)(2+4+6+…+2000)-(1+3+5+…+1999) (3)(1+3+5+…+1999)-(2+4+6+…+1998) 课后作业
7 / 7
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务