您好,欢迎来到年旅网。
搜索
您的当前位置:首页DTV32

DTV32

来源:年旅网
®DTVseries

(CRT HORIZONTAL DEFLECTION) HIGH VOLTAGE DAMPER DIODE

MAIN PRODUCTS CHARACTERISTICS

IF(AV)VRRMVF5 A to 10 A1500 V1.3 V to 1.5 VAKAKFEATURES AND BENEFITS

HIGH BREAKDOWN VOLTAGE CAPABILITYVERY FAST RECOVERY DIODESPECIFIED TURN ON SWITCHINGCHARACTERISTICS

LOW STATIC AND PEAK FORWARD VOLTAGEDROP FOR LOW DISSIPATION

SUITED TO 32-110kHz MONITORS AND16kHz TV DEFLECTION

INSULATED VERSION (ISOWATT220AC):Insulating voltage = 2000V DCCapacitance = 12pF

PLANAR TECHNOLOGY ALLOWING HIGHQUALITY AND BEST ELECTRICALCHARACTERISTICSABSOLUTE RATINGS

SymbolVRRMIF(RMS)IFSMRMS forward currentSurge non repetitive forward currenttp = 10ms half sine waveDTV16DTV32DTV56DTVDTV82DTV110TstgTjStorage temperature rangeMaximum operating junction temperatureParameterRepetitive peak reverse voltageValue150015507580808080-65 to 150150°C°C1/10

TO-220ACDTVxxxDISOWATT220ACDTVxxxFDESCRIPTION

High voltage diode with high current capabilitydedicated to horizontal deflection. DTV16 isoptimized to TV meanwhile DTV32 to DTV110 arecovering the full range of monitors from the lowend to the professional hi-definition SXGA CADdisplay units.

These devices are packaged either in TO220-ACor in ISOWATT220AC.

UnitVAAAugust 1999 - Ed: 2B

DTVseries

THERMAL RESISTANCES

SymbolRth(j-c)ParameterJunction to case thermalresistanceDTV16DTV32DTV56DTVDTV82DTV110ValueTO-220ACISOWATT220ACUnit°C/W32.521.81.61.35..743.73.5STATIC ELECTRICAL CHARACTERISTICS

ValueSymbolVF *IF = 5 AIF = 6 AIF = 6 AIF = 6 AIF = 6 AIF = 10 AIR **VR = VRRMTest ConditionsDTV16DTV32DTV56DTVDTV82DTV110DTV16DTV32DTV56DTVDTV82DTV110 pulse test :* tp = 380 µs, δ < 2%

** tp = 5 ms, δ < 2%

Tj = 25°CTypMax1.61.51.81.71.82.360100100100100100Tj = 125°CTyp1.01.11.11.11.01.15100100100100100100Max1.51.351.51.41.31.550010001000100010001000UnitVµA2/10

DTVseries

RECOVERY CHARACTERISTICS

SymboltrrIF = 100m AIR = 100mAIRR = 10mATest ConditionsTj = 25°CDTV16DTV32DTV56DTVDTV82DTV110trrIF = 1 AdIF/dt =-50A/µsVR =30VTj = 25°CDTV16DTV32DTV56DTVDTV82DTV110Typ150085075075067562520013011011010595300175135135125115nsMaxUnitnsTURN-ON SWITCHING CHARACTERISTICS

SymboltfrIF = 6 AdIF/dt = 80 A/µsVFR =3VTest ConditionsTj = 100°CDTV16DTV32DTV56DTVDTV82DTV110VFPIF = 6AdIF/dt = 80 A/µsTj = 100°CDTV16DTV32DTV56DTVDTV82DTV110To evaluate the maximum conduction losses use the following equation :DTV16 P= 1.14 x IF(AV) + 0.072 x IF2(RMS)DTV32 P= 1.069 x IF(AV) + 0.047 x IF2(RMS)DTV56 P= 1.15 x IF(AV) + 0.059 x IF2(RMS)DTV P= 1.06 x IF(AV) + 0.053 x IF2(RMS)DTV82 P= 1.01 x IF(AV) + 0.048 x IF2(RMS)DTV110 P= 1.12 x IF(AV) + 0.038 x IF2(RMS)

Typ350570350350270250252119181411MaxUnitns342826221814V3/10

DTVseries

Fig. 1-1: Power dissipation versus peak forwardcurrent (triangular waveform, δ=0.45).

3.53.02.52.01.51.00.50.0024Ip(A)6810DTV16DTV110Fig. 1-2: Power dissipation versus peak forwardcurrent (triangular waveform, δ=0.45).

2.0PF(av)(W)PF(av)(W)1.5DTV321.0DTV560.5Ip(A)0.00123456Fig. 1-3: Power dissipation versus peak forwardcurrent (triangular waveform, δ=0.45).

2.0PF(av)(W)1.5DTV821.0DTV0.5Ip(A)0.00123456Fig. 2-1: Average current versus case temperature(δ=0.5) (TO-220AC).

1210DTVFig. 2-2: Average current versus case temperature(δ=0.5) (ISOWATT220AC).

12IF(av)(A)IF(av)(A)DTV110DTV821086DTV32DTV56DTVDTV110DTV82820δ=tp/TtpDTV56DTV32DTV16T42DTV16TTcase(°C)50751001251500250δ=tp/TtpTcase(°C)507510012515002/10

DTVseries

Fig. 3-1: Forward voltage drop versus forwardcurrent (DTV16D/F).

IFM(A)20.0TypicalTj=125°CMaximumTj=125°CMaximumTj=25°CFig. 3-2: Forward voltage drop versus forwardcurrent (DTV32D/F).

IFM(A)10.0MaximumTj=125°CMaximumTj=25°C20.010.0TypicalTj=125°C1.01.0VFM(V)0.10.00.20.40.60.81.01.21.41.61.82.02.20.10.00.20.40.60.81.0VFM(V)1.21.41.61.82.0Fig. 3-3: Forward voltage drop versus forwardcurrent (DTV56D/F).

IFM(A)20.010.0TypicalTj=125°CFig. 3-4: Forward voltage drop versus forwardcurrent (DTVD/F).

IFM(A)20.010.0MaximumTj=125°CMaximumTj=25°CTypicalTj=125°CMaximumTj=125°CMaximumTj=25°C1.01.0VFM(V)0.10.000.250.500.751.001.251.501.752.002.252.50VFM(A)0.10.00.20.40.60.81.01.21.41.61.82.02.2Fig. 3-5: Forward voltage drop versus forwardcurrent (DTV82D/F).

IFM(A)20.010.0TypicalTj=125°CMaximumTj=125°CFig. 3-6: Forward voltage drop versus forwardcurrent (DTV110D/F).

IFM(A)20.010.0TypicalTj=125°CMaximumTj=25°CMaximumTj=125°CMaximumTj=25°C1.01.0VFM(V)0.10.000.250.500.751.001.251.501.752.002.252.50VFM(V)0.100.511.522.535/10

DTVseries

Fig. 4-1: Non repetitive surge peak forward currentversus overload duration (TO-220AC)(DTV16D / DTV32D / DTV56D).

IM(A)605550403530252015IM10501E-3Fig. 4-2: Non repetitive surge peak forward currentversus overload duration (ISOWATT220AC)(DTV16F / DTV32F / DTV56F).

45IM(A)Tc=100°CDTV32F & DTV56FTc=100°CDTV32D & DTV56D40353025DTV16DDTV16F201510IMttδ=0.5t(s)1E-21E-11E+0501E-3δ=0.5t(s)1E-21E-11E+0Fig. 4-3: Non repetitive surge peak forward currentversus overload duration (TO-220AC)(DTVD / DTV82D / DTV110D).

IM(A)10090807060504030IM201001E-3Fig. 4-4: Non repetitive surge peak forward currentversus overload duration (ISOWATT220AC)(DTVF / DTV82F / DTV110F).

IM(A)605550403530252015IM10501E-3Tc=100°CDTV110DDTV82DDTV110FDTV82FTc=100°CDTVDDTVFttδ=0.5t(s)δ=0.5t(s)1E-21E-11E+01E-21E-11E+0Fig. 5.1: Reverse recovery charges versus dIF/dt(DTV16D/F).

Qrr(µC)2.42.2IF=Ip90% confidence2.0Tj=125°C1.81.61.41.21.00.80.60.40.20.00.10.2Fig. 5.2: Reverse recovery charges versus dIF/dt.

Qrr(nc)IF=Ip90% confidenceTj=125°CDTVDTV82DTV3212001000800600400dIF/dt(A/µs)200dIF/dt(A/µs)0.20.51250.51.02.05.000.16/10

DTVseries

Fig. 5.3: Reverse recovery charges versus dIF/dt.

12001000800600400200dIF/dt(A/µs)00.10.20.5125DTV110Fig. 6.1: Reverse recovery current versus dIF/dt.

IRM(A)3.02.7IF=Ip90% confidence2.4Tj=125°C2.11.81.51.20.90.60.30.00.10.2Qrr(nc)IF=Ip90% confidenceTj=125°CDTV56DTV16DTV32dIF/dt(A/µs)0.5125Fig. 6.2: Reverse recovery current versus dIF/dt.

IRM(A)2.22.0IF=Ip1.0% confidenceTj=125°C1.61.41.21.00.80.60.40.20.00.10.2Fig. 6.3: Reverse recovery current versus dIF/dt.

IRM(A)2.22.0IF=Ip90% confidence1.8Tj=125°C1.61.41.21.00.80.60.40.20.00.10.2DTVDTV110DTV56DTV82dIF/dt(A/µs)dIF/dt(A/µs)0.51250.5125Fig. 7-1: Transient peak forward voltage versus

dIF/dt.

40353025201510500204060VFP(V)IF=Ip90% confidenceTj=125°CFig. 7.2: Transient peak forward voltage versusdIF/dt.

30VFP(V)IF=Ip90% confidenceTj=125°CDTV16DTV32DTV56252015105DTVDTV82DTV110dIF/dt(A/µs)8010012014000204060dIF/dt(A/µs)801001201407/10

DTVseries

Fig. 8.1: Forward recovery time versus dIF/dt.

tfr(ns)IF=Ip90% confidenceTj=125°CFig. 8-2: Forward recovery time versus dIF/dt.

tfr(ns)IF=Ip90% confidenceTj=125°C800750700650600550500450400700650600DTV32550500450DTV56DTV82DTVDTV100350DTV110dIF/dt(A/µs)020406080100120140dIF/dt(A/µs)300020406080100120140Fig. 9: Dynamic parameters versus junctiontemperature.

VFP,IRM,Qrr[Tj]/VFP,IRM,Qrr[Tj=125°C]1.2Fig. 10: Junction capacitance versus reversevoltage applied (typical values).

200100C(pF)DTV110DTV82Tj=25°CF=1MHz1.00.8VFP0.6IRM10DTV16DTV32DTV560.4QrrDTV0.20.002040Tj(°C)608010012014011VR(V)10100200Fig. 11-1: Relative variation of thermal impedancejunction to case versus pulse duration(ISOWATT220AC).

K=[Zth(j-c)/Rth(j-c)]1.0δ= 0.5Fig. 12-2: Relative variation of thermal impedancejunction to case versus pulse duration(TO-220AC).

K=[Zth(j-c)/Rth(j-c)]1.00.5δ= 0.20.5δ= 0.5δ= 0.2δ= 0.10.2TSingle pulse0.2tpδ= 0.1TSingle pulsetp(s)0.11E-21E-11E+0δ=tp/Ttp(s)1E+1δ=tp/Ttp0.11E-31E-21E-11E+08/10

DTVseries

PACKAGE DATA

TO-220AC (plastic) (JEDEC outline)

DIMENSIONSREF.H2CL5Ø IL6L2DL4L7AMillimetersMin.Max.4.601.322.720.700.881.705.1510.4014.002.9515.756.603.933.8.401.232.400.490.611.144.9510.0013.002.6515.256.203.503.75InchesMin.0.1730.0480.0940.0190.0240.0440.1940.3930.5110.1040.6000.2440.1370.147Max.0.1810.0510.1070.0270.0340.0660.2020.4090.5510.1160.6200.2590.10.151ACDEFF1GH2L2L4EL9F116.40 typ.0.5 typ.FGML5L6L7L9MDiam. I2.6 typ.0.102 typ.Cooling method : c.

Torque value : 0.55 m.N typ (0.70 m.N max).

9/10

DTVseries

PACKAGE DATA

ISOWATT220AC (plastic)

AHBDIMENSIONSREF.MillimetersMin.Typ.Max.Min.4.402.502.400.400.751.1.9510.0016.0028.6015.909.003.0030.601.12516.400.6269.300.33.200.1184.600.1732.700.0982.750.0940.700.0161.000.0301.700.0455.200.19510.400.3940.6301.2050.60.3660.126InchesTyp.Max.0.1810.1060.1080.0280.0390.0670.2050.409DiamABDL7L6L2L3EFF1GHL2L3F1FGDEL6L7DiamCooling method : C.

Torque value : 0.55 m.N typ (0.70 m.N max).Ordering codeDTV16DDTV32DDTV56DDTVDDTV82DDTV110DDTV16FDTV32FDTV56FDTVFDTV82FDTV110FMarkingDTV16DDTV32DDTV56DDTVDDTV82DDTV110DDTV16FDTV32FDTV56FDTVFDTV82FDTV110FPackageTO-220ACElectrical isolation : 2000V DCCapacitance : 12 pFWeight1.86gBase qty50Delivery modeTubeISOWATT220AC2g50TubeEpoxy meets UL94, V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences ofuse of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted byimplication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject tochange without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-proval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - - India - Italy - Japan - Malaysia

Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

10/10

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务