七年级数学下册统计调查教案
10.1统计调查(一) 教学目标
1、了解全面调查的概念;
2、会设计简单的调查问卷,收集数据; 3、掌握划记法,会用表格整理数据; 4、会画扇形统计图,能用统计图描述数据;
5、经历统计调查的一般过程,体验统计与生活的关系. 教学重点:全面调查的过程(数据的收集、整理、描述) 教学难点:绘制扇形统计图 教学过程 一、问题导入
在日常生活中,我们可能遇到下面一些问题:
(1)电视台《青年歌手大奖赛》的收视情况怎样? (2)班级里同学出生主要集中在哪一年? (3)本年度最受欢迎的影片是哪几部? 要解决这些问题,需要进行统计调查。 二、数据的收集
问题1:现在我们如果要了解全班同学对新闻、体育、动画、娱乐四类电视节目的喜爱情况,你怎样才能知道结果?
举手表决、问卷调查等。
问卷调查是一种比较常用的调查方式,采用这种方式要设计好调查问卷。 你认为设计调查问卷应包括哪些内容?
1
七年级数学下册统计调查教案
2
问卷设计的内容应包括调查中所提的问题、答案选项以及要求等。 就上面的问题我们可以设计如下的调查问卷:
如果想了解男、女生喜爱节目的差异,问卷中还应该包含什么内容? 应加“男□女□(打勾)”这一项.
问卷设计好后,请每位同学填写,然后收集起来。例如,调查的结果是: DCADBCADCD CDABDDBCDB DBDCDBDCDB ABBDDDCDBD 注意:用字母代替节目的类型,可方便统计. 三、数据的整理
从上面的数据中你容易看出全班同学喜爱各类节目的情况吗?为什么? 不容易。因为这些数据杂乱无章,不容易发现其中的规律。
为了更清楚地了解数据所蕴含的规律,需要对数据进行整理。你认为应该怎样整理我们收集到的数据?
划“正”字。这就是所谓的划记法。 下面我们利用下表整理数据。 全班同学最喜爱节目的人数统计表:
上表可以清楚地反映全班同学喜爱各类节目的情况。 四、数据的描述
为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。
七年级数学下册统计调查教案 2
3
绘制条形统计图[投影7]
绘制扇形统计图
我们知道,扇形图用圆代表总体,每一个扇形代表总体的一部分。扇形图通过扇形的大小来反映各个部分占总体的百分比。扇形的大小是由圆心角的大小决定的,所以,我们只要知道圆心角的度数就可以画出代表某一部分的扇形。
因为组成扇形图的各扇形圆心角的和是3600,所以只需根据各类节目所占的百分比就可以算出对应扇形圆心角的度数。
新闻:3600×10%≈360, 体育:3600×25%=900, 动画:3600×20%=720, 娱乐:3600×45%=1620.
在一个圆中,根据算得的圆心角的度数画出各个扇形,并注明各类节目的名称及相应的百分比。[投影8]
你能根据上面的条形统计图和扇形统计图直接说出全班同学喜爱各类电视节目的情况吗?
在上面的调查中,我们利用调查问卷得到全班同学喜爱电视节目的数据,利用表格整理数据,并用统计图进行直观形象的描述。通过分析表和图,了解到了全班同学喜爱电视节目的情况。在这个调查中,全班同学是要考察的全体对象,
3
七年级数学下册统计调查教案
4
我们对全体对象都进行了调查,像这样考察全体对象的调查叫做全面调查。例如,2000年我国进行的第五人口普查,就是一次全面调查。
请你举出一些生活中运用全面调查的例子. 五、课堂练习 六、课堂小结
1、本节课我们经历了全面调查的一般过程,知道了利用问卷调查来收集数据,利用表格来整理数据,利用条形统计图和扇形统计图来描述数据。
2、学会了设计调查问卷和扇形统计图的画法。
10.1统计调查(二)
教学目标1、经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;2、初步感受抽样调查的必要性,初步体会用样本估计总体的思想。
教学重点:抽样调查、样本、总体等概念以及用样本估计总体的思想 教学难点:样本的抽取 教学过程 一、问题导入
要了解一罐八宝粥里各种成分的比例,你会怎么做?把一罐八宝粥铺开在一个盆子里查看。这样可行吗?这样方便吗?为此我们必须找到一种方便合理的调查方法才行。
二、抽样调查及有关概念
问题2某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,怎样进行调查?
七年级数学下册统计调查教案 4
5
可以用全面调查的方法对全校学生逐个进行调查,然后整理收集到的数据,统计出全校学生对四类电视节目的喜爱情况。
这样做,当然好,可以准确、全面地了解情况。但是,由于学生人数比较多,这样做又会有许多弊病,你能说说吗?
花费的时间长,消耗的人力、物力大。你能找到一种既省时省力又能解决问题的调查方法吗?
可以抽取一部分学生进行调查.
这种只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的方法就是抽样调查。这里要考查的全体对象称为总体,组成总体的每一个考查对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目称为样本容量。上面问题中全校学生是总体,每一名学生是个体,我们从总体中抽取的部分学生是一个样本,抽取的学生数就是样本容量。例如抽取100名学生,样本容量就是100。
注意:抽样调查还适用一些具有破坏性的调查,如关于灯泡寿命、火柴质量等。
三、样本的抽取
抽样调查的关键是样本的抽取,如果抽取的样本得当,就能很好地反映总体的情况,否则,抽样调查的结果会偏离总体情况。上面的问题,抽取样本的要求是什么呢?
一、抽取的学生数目要适当。如果抽取的学生数太少,那么样本就不能很好地反映总体的情况;如果抽取的学生人数太多,那么达不到省时省力的目的。我们可以取100名学生作为一个样本。
二、要尽量使每一个学生抽取到的机会相等。例如,可以在2000名学生的注册学号中,用电脑随机抽取100个学号,调查这些学号对应的100名学生。
你还能想出使每个学生都有相等机会被抽到的方法吗?
5
七年级数学下册统计调查教案
6
从2000名学生的注册学号中,用电脑抽取能被5整除的100个学号,调查这些学号对应的学生;放学或上学时在校门口随机访问100名学生,等等。
这种总体中的每一个个体都有相等机会被抽到的抽样方法是一种简单随机抽样。
现在你能回答“要了解一罐八宝粥里各种成分的比例,你会怎么做?”这个问题了吗?
搅拌均匀后,舀一勺查看,用所得的结果估计这罐八宝粥成分的比例。 四、样本的处理
和全面调查一样,对收集的数据要进行整理。下面是某同学抽取样本容量为100的调查数据统计表。
抽样调查100名学生最喜爱节目的人数统计表
五、课堂练习:
七年级数学下册统计调查教案 6
7
六、课堂小结
1、个体、总体、样本、样本容量及抽样调查的概念;
2、抽取样本的要求:(1)抽取的样本容量要适当;(2)要尽量使每一个个体被抽取到的机会相等——简单随机抽样。
3、全面调查和抽样调查的优缺点是什么?
全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查;抽样调查具有花费少、省时的特点,但没有全面调查准确,受样本选取的影响比较大。
10.1统计调查(三)
教学目标1、经历较复杂问题的处理过程,感受分层抽样的必要性,掌握分层抽样的方法;2、学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。
教学重点:分层抽样的方法和样本的分析、归纳 教学难点:分层抽样方案的制定 教学过程 一、复习导入
什么是抽样调查?什么是简单随机抽样?
仔细观察我们身边周围,抽样调查的应用是十分普遍的。有些问题总体量不大,个体差异程度小,只需进行简单随机抽样就可以了,有些问题总体量大,个体差异程度较大,必须有更好的抽样方法才行。
二、分层抽样
问题3某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐四类节目的喜爱情况。
7
七年级数学下册统计调查教案
8
(1)能不能用问题2中对学生的调查数据去估计整个地区电视观众的情况呢?为什么?
不能。一是样本容量太小;二是学生、成年人、老年人喜欢的电视节目往往有明显不同.
所以要了解整个地区观众的情况,需要在更大范围内抽取样本。 (2)如果抽取一个容量为1000的样本进行调查,你会怎样调查? 由于各年龄段对节目爱好有明显的不同,而同一个年龄段对节目的喜爱又存在共性,因此可以对青少年、成年人、老年人各人群分别进行简单随机抽样,使每个年龄段都能抽取一定的人数来代表所在的人群,然后汇总调查结果。
这里还有一个问题,每个年龄段抽取的人数怎么确定呢?
可以根据各年龄段实际人口的比例分配,以确保每一个年龄段都有相应比例的代表。
如果青少年、成年人、老年人的人数比例为2︰5︰3,那么各年龄段抽取的人数分别是多少?
七年级数学下册统计调查教案 8
9
此外,还可以估计各个年龄段中观众对某类节目喜爱的情况。
例如,估计各个年龄段中观众对动画类节目和娱乐类节目喜爱的情况。 能根据上表中的数据进行估计吗?为什么?不能。因为不同年龄层抽取的人数不相等。
那么根据什么来进行估计呢?
可根据不同年龄层中喜爱动画和娱乐类节目的百分比来估计。如表: 动画 娱乐
青少年 28% 39%
成年人 11.2% 37.6%
老年人 9.3% 23.3%
从表中你看到了什么?不同年龄段的观众对节目喜爱不尽相同。 用什么方式可以直观地反映这种变化呢?折线统计图。 下图是不同年龄段观众喜爱娱乐和动画类节目的折线统计图。
9
七年级数学下册统计调查教案
10
从上图中可以清楚地看到,随着年龄的增加,观众对动画类、娱乐类的喜爱程度逐渐下降。
四、课堂练习: 五、课堂小结
1、对于总体量大,个差异程度较大的问题,需要采取分层抽样的方法确定样本,这样可使样本更具有代表性。
2、对样本进行分析、归纳,得出的结论可以用来估计总体的情况,这就是统计的思想。
布置作业:
七年级数学下册统计调查教案 10
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务