IR2302(S) & (PbF)
HALF-BRIDGE DRIVERFeatures
•Floating channel designed for bootstrap operation•••••••••••
Fully operational to +600V
Tolerant to negative transient voltagedV/dt immune
Gate drive supply range from 5 to 20VUndervoltage lockout for both channels3.3V, 5V and 15V input logic compatibleCross-conduction prevention logic
Matched propagation delay for both channelsHigh side output in phase with IN inputLogic and power ground +/- 5V offset.Internal 0ns dead-time
Lower di/dt gate driver for better noiseimmunity
Shut down input turns off both channels8-Lead SOIC also available LEAD-FREE (PbF).8-Lead SOICIR2302(S)(Also available LEAD-FREE (PbF))Packages8-Lead PDIPIR23022106/2301//2108//2109/2302/2304 Feature ComparisonPart2106/23012102108210842109/230221094InputlogicHIN/LINHIN/LINCross-conductionpreventionlogicnoyesDead-TimeGround PinsCOMVSS/COMCOMVSS/COMCOMVSS/COMnoneInternal 0nsProgrammable 0.~5 µsDescription
IN/SDyesThe IR2302(S) are high voltage, high speedProgrammable 0.~5 µspower MOSFET and IGBT drivers with depen-yesHIN/LINInternal 100ns2304COMdent high and low side referenced outputchannels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction.The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output driversfeature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel canbe used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to600 volts.
Internal 0nsTypical Connectionup to 600VVCCVCCINSDVBHOVSLOIR2302TOLOADINSDCOM(Refer to Lead Assignments forcorrect configuration). This/These diagram(s) show elec-trical connections only. Please refer to our Application Notesand DesignTips for proper circuit board layout.www.irf.com1
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measuredunder board mounted and still air conditions.
SymbolVBVSVHOVCCVLOVINdVS/dtPDRthJATJTSTLDefinitionHigh side floating absolute voltageHigh side floating supply offset voltageHigh side floating output voltageLow side and logic fixed supply voltageLow side output voltageLogic input voltage (IN & SD)Allowable offset supply voltage transientPackage power dissipation @ TA ≤ +25°CThermal resistance, junction to ambientJunction temperatureStorage temperatureLead temperature (soldering, 10 seconds)(8 Lead PDIP)(8 Lead SOIC)(8 Lead PDIP)(8 Lead SOIC)Min.-0.3VB - 25VS - 0.3-0.3-0.3——————-50—Max.625VB + 0.3VB + 0.325VCC + 0.3501.00.625125200150150300UnitsV COM - 0.3 VCC + 0.3V/nsW°C/W°CSymbolVBVSVHOVCCVLOVINTADefinitionHigh side floating supply absolute voltageHigh side floating supply offset voltageHigh side floating output voltageLow side and logic fixed supply voltageLow side output voltageLogic input voltage (IN & SD)Ambient temperatureMin.VS + 5Note 1VS50-40Max.VS + 20600VB20VCC150UnitsV COM VCC°CNote 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design TipDT97-3 for more details).
SymboltontofftsdMTtrtfDTDefinitionTurn-on propagation delayTurn-off propagation delayShut-down propagation delay Min. Typ.550—————400—75020020001305000Max.UnitsTest Conditions950280280502208068060nsecVS = 0VVS = 0VVS = 0VVS = 0V or 600VDelay matching, HS & LS turn-on/offTurn-on rise timeTurn-off fall timeDeadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO)Deadtime matching = DTLO - HO - DTHO-LOStatic Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced toCOM and are applicable to the respective input leads: IN and SD. The VO, IO and Ron parameters are referenced to COMand are applicable to the respective output leads: HO and LO.SymbolVIHVILVSD,TH+VSD,TH-VOHVOLILKIQBSIQCCIIN+IIN-VCCUV+VBSUV+VCCUV-VBSUV-VCCUVHVBSUVHIO+IO-DefinitionLogic “1” input voltage for HO & logic “0” for LOLogic “0” input voltage for HO & logic “1” for LOSD input positive going thresholdSD input negative going thresholdHigh level output voltage, VBIAS - VOLow level output voltage, VOOffset supply leakage currentQuiescent VBS supply currentQuiescent VCC supply currentLogic “1” input bias currentLogic “0” input bias currentVCC and VBS supply undervoltagepositive going thresholdVCC and VBS supply undervoltagenegative going thresholdHysteresisOutput high short circuit pulsed vurrentOutput low short circuit pulsed currentMin.Typ.Max.UnitsTest Conditions2.9—2.9————200.4——3.330.1120250————0.80.3—601.05—4.13.80.3200350—0.8—0.81.40.6501001.6202.7———VO = 0V, PW ≤ 10 µsVO = 15V,PW ≤ 10 µsµAmAµAVVCC = 10V to 20VVCC = 10V to 20VVCC = 10V to 20VVCC = 10V to 20VIO = 20 mAIO = 20 mAVB = VS = 600VVIN = 0V or 5VVIN = 0V or 5VIN = 5V, SD = 0VIN = 0V, SD = 5VVmAFunctional Block Diagrams
VBUVDETECTRHVLEVELSHIFTERPULSEGENERATORPULSEFILTERRSQHOINVSS/COMLEVELSHIFTVSDEADTIMEUVDETECTVCC+5VLOSDVSS/COMLEVELSHIFTDELAYCOMLead Definitions
SymbolDescription
INSDVBHOVSVCCLOCOMLogic input for high and low side gate driver outputs (HO and LO), in phase with HO
Logic input for shutdownHigh side floating supplyHigh side gate drive outputHigh side floating supply returnLow side and logic fixed supplyLow side gate drive outputLow side return1234
VCCINSDCOM
VBHOVSLO
8
765
1234
VCCINSDCOM
VBHOVSLO
8
765
8 Lead PDIP
8 Lead SOIC
(Also available LEAD-FREE (PbF)
IR2302IR2302S
IN
SD
HOLO
Figure 1. Input/Output Timing Diagram
SD50%tsdHO90%LOFigure 3. Shutdown Waveform Definitions
IN(LO)50%50%IN(HO)tontrtofftf90%90%LOHO10%10%Figure 2. Switching Time Waveform Definitions
50%50%IN90%HODTLO-HO10%LO90%DTHO-LO10%MDT=
DTLO-HO
- DTHO-LO
IN(LO)50%50%IN(HO)LOHO10%MT90%MTLOHOFigure 5. Delay Matching Waveform Definitions
Turn-on Propagation Delay (ns)Turn-on Propagation Delay (ns)13001100900700500Max.1500130011009007005003005101520Supply Voltage (V)Figure 6B. Turn-on Propagation Delay vs. Supply VoltageMax.Typ.Typ.Min.Min.300-50-250255075100125Temperature (oC)Figure 6A. Turn-on Propagation Delay vs. Temperature)sn1300( yale1100DMax. noit900agTyp.apo700rPMin. no500-nruT3003691215Input Voltage (V)Figure 6C. Turn-on Propagation Delay vs. Input Voltage700600500Max.400Typ.3002001005101520Supply Voltage (V)Figure 7B. Turn-off Propagation Delay vs. Supply Voltage)s500n( yale400D noit300agaMax.po200rP Typ.ffo100-nruT0-50-250255075100125Temperature (oC)Figure 7A. Turn-off Propagation Delay vs. Temperature400350300Max.250200Typ.1501003691215Input Voltage (V)Figure 7C. Turn-off Propagation Delay vs. Input VoltageTurn-off Propagation Delay (ns)Turn-off Propagation Delay (ns))sn500( yaleD400 noita300gaMax.por200P nwo100Typ.d-tuhS0-50-250255075100125Temperature (oC)Figure 8A. Shut-down Propagation Delay vs. Temperature)sn400( yale350D no300Max.itagap250orP 200Typ.nwod150-tuhS1003691215Input Voltage (V)Figure 8C. Shut-down Propagation Delay vs. Input Voltage700600500Max.400300Typ.2001005101520Supply Voltage (V)Figure 8B. Shut-down Propagation Delay vs. Supply Voltage500)sn( 400emiT 300esiR n200Max.o-nruT100Typ.0-50-250255075100125Temperature (oC)Figure 9A. Turn-on Rise Time vs. TemperatureShut-down Propagation Delay (ns)700)sn600( em500Max.iT e400siR 300nTyp.o-n200ruT10005101520Supply Voltage (V)Figure 9B. Turn-on Rise Time vs. Supply Voltage200)sn( e150mMax.iT lla100F ffo-Typ.nru50T05101520Supply Voltage (V)Figure 10B. Turn-off Fall Time vs. Supply Voltage200150100Max.50Typ.0-50-250255075100125Temperature (oC)Figure 10A. Turn-off Fall Time vs. Temperature1000800600Max.Typ.400Min.200-50-250255075100125Temperature (oC)Figure 11A. Deadtime vs. TemperatureTurn-off Fall Time (ns)Deadtime (ns)1000800Max.)snTyp.( e600mMin.itda400eD20005101520Supply Voltage (V)Figure 11B. Deadtime vs. Supply Voltage6)V( e5gatlo4V Max.tup3nI \"12\" cigo1L0-50-250255075100125Temperature (oC)Figure 12A. Logic \"1\" Input Voltage vs. Temperature76Max.)s5(Typ. em4Min.itda3eD210050100150200RDT (KΩ)Figure 11C. Deadtime vs. RDT6)V( e5gatlo4V tup3Max.nI \"12\" cigo1L05101520Supply Voltage (V)Figure 12B. Logic \"1\" Input Voltage vs. Supply Voltage6)V( e5tagl4Vo tpu3In \"2\"0 cig1Min.Lo0-50-250255075100125Temperature (oC)Figure 13A. Logic \"0\" Input Voltage vs. TemperatureV( d6lohse5rhT 4gnioG3Max. evit2isoP 1tupnI0 DS-50-250255075100125Temperature (oC)Figure 14A. SD Input Positive Going Thresholdvs. Temperature6)V( e5gatlo4V tup3nI \"02\" cigo1Min.L05101520Supply Voltage (V)Figure 13B. Logic \"0\" Input Voltage vs. Supply Voltage63Max.2105101520Supply Voltage (V)Figure 14B. SD Input Positive Going Thresholdvs. Supply VoltageSD Input Positive Going Threshold (V)V( 6dlohs5erhT4 gnioG3 evi2tageN1Min. tupn0I D-50-250255075100125STemperature (oC)Figure 15A. SD Input Negative Going Thresholdvs. Temperature)V4( egatlo3V tuptu2O leveL1Max. hgiTyp.H0-50-250255075100125Temperature (oC)Figure 16A. High Level Output Voltage vs. TemperatureV( d6lohs5erhT 4gnioG3 evit2ageN1Min. tupn0I D5101520SSupply Voltage (V)Figure 15B. SD Input Negative Going Thresholdvs. Supply Voltage)6V( eg5atloV4 Max.tuptu3O lev2eTyp.L h1giH05101520Supply Voltage (V)Figure 16B. High Level Output Voltage vs. Supply Voltage2.01.51.00.5Max.0.0Typ.-50-250255075100125Temperature (oC)Figure 17A. Low Level Output Voltage vs. Temperature500400300200100Max.0-50-250255075100125Temperature (oC)Figure 18A. Offset Supply Leakage Current vs. Temperature)2.0V( egat1.5loV tuMax.pt1.0uO leve0.5LTyp. woL0.05101520Supply Voltage (V)Figure 17B. Low Level Output Voltage vs. Supply Voltage)Am500( tnre400rCu 300kageea200 Lylpp100Max.Su tse0ffO100200300400500600Offset Supply Voltage (V)Figure 18B. Offset Supply Leakage Current vs. Offset Supply VoltageLow Level Output Voltage (V)Offset Supply Leakage Current (A))A200( tnerru150C ylppu100SMax. SBV t50Typ.necMin.seiu0Q-50-250255075100125Temperature (oC)Figure 19A. Quiescent VBS Supply Current vs. Temperature)Am3.0( tne2.5rruC2.0 yMaxlppu1.5STyp. CC1.0V tne0.5Min.cseiu0.0Q-50-250255075100125Temperature (oC)Figure 20A. Quiescent VCC Supply Currentvs. Temperature200150100SB50Max.Typ.Min.05101520VBS Supply Voltage (V)Figure 19B. Quiescent VBS Supply Current vs. VBS Supply Voltage)Am3( tne2.5rruC 2ylppu1.5S CCV1 tnec0.5Max.Typ.sMin.eiu0Q5101520VCC Supply Voltage (V)Figure 20B. Quiescent VCC Supply Currentvs. VCC Supply VoltageQuiescent V Supply Current (A))A60( tne50rruC40 saiB 30tupnI20 \"1\" c10Max.igTyp.oL0-50-250255075100125Temperature (oC)Figure 21A. Logic \"1\" Input Bias Current vs. Temperature)A5( tner4ruC sa3iB tup2Max.nI \"0\" 1cigoL0-50-250255075100125Temperature (oC)Figure 22A. Logic \"0\" Input Bias Current vs. Temperature50403020Max.10Typ.05101520Supply Voltage (V)Figure 21B. Logic \"1\" Input Bias Current vs. Supply Voltage)Am5( tner4ruC sa3iB tup2Max.nI \"0\"1 cigoL05101520Supply Voltage (V)Figure 22B. Logic \"0\" Input Bias Current vs. Supply VoltageLogic \"1\" Input Bias Current (mA) )+( 6dlohser5Max.hT egat4Typ.lo)vVr(Min.edn3U SBV d2na -50-250255075100125CCVTemperature (oC)Figure 23. VCC and VBS Undervoltage Threshold (+) vs. Temperature)400Am( tne300rruTyp.C ec200ruMin.oS tu100ptuO0-50-250255075100125Temperature (oC)Figure 25A. Output Source Current vs. Temperature65Max.4Typ.)V(Min.3SB2C-50-250255075100125CTemperature (oC)Figure 24. VCC and VBS Undervoltage Threshold (-) vs. Temperature)400Am( tne300rruC ec200ruoS tu100Typ.ptuO0Min.5101520Supply Voltage (V)Figure 25B. Output Source Current vs. Supply VoltageV and V Undervoltage Threshold (-) 600)Am500( tnTyp.er400ruC k300nMin.iS t200uptuO1000-50-250255075100125Temperature (oC)Figure 26A. Output Sink Current vs. Temperature0-2-4Typ.-6S-8-10-125101520VBS Floating Supply Voltage (V)Figure 27. Maximum VS Negative Offset vs. VBS Floating Supply Voltage600)Am500( tner400ruC k300niS t200uptuO100Typ.Min.05101520Supply Voltage (V)Figure 26B. Output Sink Current vs. Supply Voltage140120)C( 100erut140Va80rp 70Vme60 0VT40201101001000Frequency (KHz)Figure 28. IR2302 vs. Frequency (IRFBC20), Rgate=33Ω, VCC=15VMaximum V Negative Offset (V)o140120)C(o 100eru140Vtar80e 70Vpm 0Ve60T40201101001000Frequency (KHz)Figure 29. IR2302 vs. Frequency (IRFBC30),Rgate=22Ω, VCC=15V140140V 70V1200V)C(o 100eruta80repm60eT40201101001000Frequency (KHz)Figure 31. IR2302 vs. Frequency (IRFPE50), Rgate=10Ω, VCC=15V140120)C(o 100e140Vruta80 70Vrepm60 0VeT40201101001000Frequency (KHz)Figure 30. IR2302 vs. Frequency (IRFBC40), Rgate=15Ω, VCC=15V140120)C(o 100eruta80140Vrepm6070Ve0VT40201101001000Frequency (KHz)Figure 32. IR2302S vs. Frequency (IRFBC20), Rgate=33Ω, VCC=15V140120)140VC(o100 70Ver ut80 0Varepm60eT40201101001000Frequency (KHz)Figure 33. IR2302S vs. Frequency (IRFBC30), Rgate=22Ω, VCC=15V140140V 70V 0V120)C(o 100erute80rpme60T40201101001000Frequency (KHz)Figure 35. IR2302S vs. Frequency (IRFPE50), Rgate=10Ω, VCC=15V140140V 70V120)C 0V(o e100rutar80epm60eT40201101001000Frequency (KHz)Figure 34. IR2302S vs. Frequency (IRFBC40), Rgate=15Ω, VCC=15V8 Lead PDIPDA5BFOOTPRINT8X 0.72 [.028]01-601401-3003 01 (MS-001AB)DIMAbcDINCHESMIN.0532.013.0075.1.1497MAX.0688.0098.020.0098.1968.1574MILLIMETERSMIN1.350.100.330.194.803.80MAX1.750.250.510.255.004.00A1.00406E8765H0.25 [.010] AE6.46 [.255]1234ee1HKL8X 1.78 [.070].050 BASIC.025 BASIC.2284.0099.016 0°.2440.0196.050 8°1.27 BASIC0.635 BASIC5.800.250.40 0°6.200.501.27 8°6Xee13X 1.27 [.050]yAC0.10 [.004] yK x 45°8X b0.25 [.010] A1CAB8X L78X cNOTES:1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.2. CONTROLLING DIMENSION: MILLIMETER3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.8 Lead SOIC 01-602701-0021 11 (MS-012AA)Part numberIRxxxxxxYWW??XXXXLot Code(Prod mode - 4 digit SPN code)IR logoDate codePin 1Identifier?PMARKING CODELead Free ReleasedNon-Lead FreeReleasedAssembly site codePer SCOP 200-002
Thisproduct has been designed and qualified for the Automotive market.
Qualification Standards can be found on IR’s Web Site http://www.irf.com
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
8/16/2004
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务