控制系统的稳态误差分析
E(s) N(s) + C(s) R(s) - G1(s) B(s) G2(s) H(s)
m3 图中:G1(s)k1(is1)sv1(Tjs1)j1i1n1m1kM1(s), G2(s)1v1sN1(s)k2(is1)sv2(Tjs1)j1i1n2m2k2M2(s), H(s)v2sN2(s)k3(is1)sv3(Tjs1)j1i1n3k3H(1s), v3sH2(s)闭环系统的开环传递函数为:Gk(s)G1(s)G2(s)H(s)k(is1)s(Tjs1)j1i1nmkM1M2H1(nm), 1v2v3sN1N2H2
注:本教材以偏差essr()(输入端)代替误差ssr()进行给定输入作用下的稳态误差计算,而以误差(输出端)进行扰动输入作用下的稳态误差计算。
1
偏差(输入端) 给定输入作用 扰动输入作用 essr()lime(t)lim[r(t)b(t)] ttE(s)R(s)B(s) E(s)R(s)B(s) 1 定义 误差(输出端) ssr()lim(t)lim[c0(t)c(t)] tt(s)C0(s)C(s) (s)0C(s) ER(s)2 误差传递函数 E(s)1R(s)1Gk(s)EN(s) G2(s)(s)N(s)1Gk(s)sN1M2H2sv1v2v3N1N2H2M1M2H1v1v3sv1v2v3N1N2H2 v1v2v3sN1N2H2M1M2H1ER(s)R(s)B(s) 3 稳态误差 本教材以偏差essr()代替误差ssr() 1R(s) 1Gk(s)EN(s)C(s)EN(s)N(s)G2(s)N(s) 1Gk(s)4 稳态误差级数 1i)essr(t)Cir(i)(t),Ci(ER(0),i0,1,2,i!i0 1(i)(i)e(t)Cn(t),CEN(0),i0,1,2, 1ssninin(0)sR(s)(i)(0)siR(s)i!ER(0)R(s)i0ERERi!s0ER(s)ER(s)R(s)① 终值定理:essr()lime(t)limsER(s)limsts01R(s)(注:sE(s)需满足条件) 1Gk(s)essn()lime(t)limsEN(s)limsts0s0G2N(s) 1Gk(s)② 稳态误差级数:先求稳态误差级数essr(t)5 稳态误差终值的计算 Crii0(i)(t),再求essr()limessr(t) t先求essn(t)1Cnini0(i)(t),再求essn()limessn(t) t③ 拉氏反变换:先求偏差的拉氏反变换L1[ER(s)]er(t),再求essr()limer(t) t先求L[EN(s)]en(t),再求essn()limen(t) t④ 按定义(直接求极限):essr()lim[r(t)b(t)] tessn()lim[0c(t)] t
2
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务