(12)发明专利申请
(10)申请公布号 CN 107784197 A(43)申请公布日 2018.03.09
(21)申请号 201711024250.9(22)申请日 2017.10.27
(71)申请人 华东医药(杭州)基因科技有限公司
地址 310020 浙江省杭州市江干区水湘路
341号(金骏大厦)1114室(72)发明人 程标
(74)专利代理机构 杭州求是专利事务所有限公
司 33200
代理人 黄欢娣 邱启旺(51)Int.Cl.
G06F 19/12(2011.01)G06F 19/28(2011.01)C12Q 1/6851(2018.01)
权利要求书2页 说明书6页 附图3页
()发明名称
一种PCR实验优化方法
(57)摘要
本发明公开了PCR实验优化方法,首先根据PCR的精度期望值E确定低位反应单元阴性率PL和高位反应单元阴性率PU,若PCR扩增后反应单元阴性率在低位反应单元阴性率PL和高位反应单元阴性率PU之间,采用基于泊松理论浓度计算方法计算反应物初始浓度;否则,采用实时聚类浓度计算方法计算反应物初始浓度。这种方法提高了PCR实验中计算反应物初始浓度的精确度,且拓宽了满足精度要求的浓度检测范围,同时精度要求还可以动态更改。
CN 107784197 ACN 107784197 A
权 利 要 求 书
1/2页
1.一种PCR实验优化方法,其特征在于,根据PCR扩增后反应单元阴性率,确定计算反应物初始浓度的计算方法。
2.根据权利要求1所述的方法,其特征在于,首先根据PCR的精度期望值E确定低位反应单元阴性率PL和高位反应单元阴性率PU,若PCR扩增后反应单元阴性率在低位反应单元阴性率PL和高位反应单元阴性率PU之间,采用基于泊松理论浓度计算方法计算反应物初始浓度;否则,采用实时聚类浓度计算方法计算反应物初始浓度。
3.根据权利要求2所述的方法,其特征在于,所述低位反应单元阴性率PL和高位反应单元阴性率PU,是通过PCR的精度曲线和精度期望值E确定的,如下所示:
绝对测量精度值precision与阴性率p的关系是为:
其中,中间变量λ为目标基因拷贝平均数,n为反应单元个数,
precisionU表示精度区间上限,precisionL表示精度区间下限。令precision=E,即可获得低位反应单元阴性率PL和高位反应单元阴性率PU。
4.根据权利要求2所述的方法,其特征在于,采用基于泊松理论浓度计算方法计算反应物初始浓度C为:
其中,v为每个反应单元的平均体积,p为阴性率。5.根据权利要求2所述的方法,其特征在于,采用实时聚类浓度计算方法计算反应物初始浓度C,具体为:
(1)荧光阈值R11与每个阳性反应单元扩增曲线在指数增长期都有一个交点,该交点对应相应的扩增周期值Cti。根据Cti进行聚类,获得k个聚类,每个聚类对应的中心值从大到小依次为M1,M2,……,Mk;第j个聚类中包含的扩增周期值Cti的数量为Sj。
其中,荧光阈值R11为至少包含3~20个循环周期的荧光信号标准偏差的3~15倍,起始周期为第2~10个循环周期,结束周期为第10~25个循环周期。或为第Cn个周期的荧光强度值,第Cn个周期的荧光强度值满足:
其中Cn代表扩增周期,R是对应扩增周期的荧光强度值。(2)计算扩增效率平均值:
ηn为反应单元个i为第i个反应单元的反应效率,
2
CN 107784197 A
权 利 要 求 书
2/2页
数,
其中,荧光阈值R22不等于R11,荧光阈值R22为至少包含3~20个循环周期的荧光信号标准偏差的3~15倍,起始周期为第2~10个循环周期,结束周期为第10~25个循环周期。或为第Cn个周期的荧光强度值,第Cn个周期的荧光强度值满足:
其中Cn代表扩增周期,R是对应扩增周期的荧光强度值。
RB为本底荧光值,ci1,ci2分别为是荧光阈值R11、R22与第i个反应单元的扩增曲线的交点所对应的扩增周期,c2>c1。
(3)反应物初始浓度C为:
3
CN 107784197 A
说 明 书一种PCR实验优化方法
1/6页
技术领域
[0001]本发明涉及一种PCR实验优化方法。
背景技术
[0002]数字PCR是把荧光定量反应体系均匀地分配到大量微小的反应单元中,每个微小反应单元中不包含或包含一个到多个目标基因片段。扩增结束后,含有目标基因片段的产生阳性检测信号,而不含有目标基因的不产生检测信号,通过终点荧光信号判断的阳性反应单元的数量所占总的反应单元的比率和统计学方法计算原始样本中靶基因的拷贝数。[0003]基于泊松分布的数字PCR对基因浓度的定量测量可以具有非常高的精度,对于未知样本动态范围内稀释度下的测量精度不能保障也不能提前预判。本发明根据PCR的精度期望值E来确定计算反应物初始浓度的计算方法,对PCR实验进行优化。发明内容
[0004]本发明的目的在于针对现有技术的不足,提供一种PCR实验优化方法。[0005]本发明的目的是通过以下技术方案实现的:一种PCR实验优化方法,根据PCR扩增后反应单元阴性率,确定计算反应物初始浓度的计算方法。[0006]进一步地,首先根据PCR的精度期望值E确定低位反应单元阴性率PL和高位反应单元阴性率PU,若PCR扩增后反应单元阴性率在低位反应单元阴性率PL和高位反应单元阴性率PU之间,采用基于泊松理论浓度计算方法计算反应物初始浓度;否则,采用实时聚类浓度计算方法计算反应物初始浓度。[0007]进一步地,所述低位反应单元阴性率PL和高位反应单元阴性率PU,是通过PCR的精度曲线和精度期望值E确定的,如下所示:
[0008]绝对测量精度值precision与阴性率p的关系是为:
[0009]
[0010]
[0011]其中,中间变量λ为目标基因拷贝平均数,n为反应单元个数,
precisionU表示精度区间上限,precisionL表示精度区间下限。令precision=E,即可获得
低位反应单元阴性率PL和高位反应单元阴性率PU。[0012]进一步地,采用基于泊松理论浓度计算方法计算反应物初始浓度C为:
[0013]
4
CN 107784197 A[0014]
说 明 书
2/6页
其中,v为每个反应单元的平均体积,p为阴性率。
[0015]进一步地,采用实时聚类浓度计算方法计算反应物初始浓度C,具体为:[0016](1)荧光阈值R11与每个阳性反应单元扩增曲线在指数增长期都有一个交点,该交点对应相应的扩增周期值Cti。根据Cti进行聚类,获得k个聚类,每个聚类对应的中心值从大到小依次为M1,M2,……,Mk;第j个聚类中包含的扩增周期值Cti的数量为Sj。[0017]其中,荧光阈值R11为至少包含3~20个循环周期的荧光信号标准偏差的3~15倍,起始周期为第2~10个循环周期,结束周期为第10~25个循环周期。或为第Cn个周期的荧光强度值,第Cn个周期的荧光强度值满足:
[0018][0019][0020]
其中Cn代表扩增周期,R是对应扩增周期的荧光强度值。(2)计算扩增效率平均值:
ηn为反应单i为第i个反应单元的反应效率,
元个数,
其中,荧光阈值R22不等于R11,荧光阈值R22为至少包含3~20个循环周期的荧光信号标准偏差的3~15倍,起始周期为第2~10个循环周期,结束周期为第10~25个循环周期。或为第Cn个周期的荧光强度值,第Cn个周期的荧光强度值满足:
[0022][0021]
其中Cn代表扩增周期,R是对应扩增周期的荧光强度值。[0024]RB为本底荧光值,ci1,ci2分别为是荧光阈值R11、R22与第i个反应单元的扩增曲线的交点所对应的扩增周期,c2>c1。
[0025][0026]
[0023]
(3)反应物初始浓度C为:
本发明的有益效果在于:本发明根据PCR的精度期望值E来确定计算反应物初始浓度的计算方法,对PCR实验进行优化。本发明提高了PCR实验中计算反应物初始浓度的精确度,且拓宽了满足精度要求的浓度检测范围,同时精度要求还可以动态更改。
附图说明
[0027]图1为在样本为20000个反应单元时95%的置信水平下测量初始靶基因浓度的精度置信区间,其中两条曲线分别表示精度区间上限和下限。
[0028]图2为不同反应单元数量下初始靶基因浓度的绝对精度与反应单元阴性率之间的关系曲线。
[0029]图3为根据测量初始靶基因浓度的绝对精度与反应单元阴性率之间的关系曲线得到用户指定精度为E时的低位阴性率PL和高位阴性率PU。[0030]图4为采用实时聚类浓度计算方法的聚类结果。
5
CN 107784197 A[0031]
说 明 书
3/6页
图5为各反应单元的实时荧光曲线图和荧光阈值R11和R22。
具体实施方式
[0032]在一个示例性实施例中,提供一种PCR实验优化方法。所述方法包含从用户接收用于实验的精度需求,即精度期望值E,根据需求确定合适的浓度计算方法,以优化PCR实验。[0033]基于泊松分布的数字PCR可以实现基因定量测量的极高精度。本发明针对的是大样本PCR反应单元,一般含有上万个反应单元,样品经过充分稀释后,单分子扩增反应单元的概率和数量会有所增加。本发明通过仿真数值计算MATLAB软件建立基于泊松分布的数学模型进行模拟实际PCR目标基因分布情况。[0034]如图1所示,在样本为20000个反应单元时95%的置信水平下测量初始靶基因浓度的精度置信区间,随着反应单元阴性率的增加,置信区间先减小后增大,表示的绝对精度先增大后减小。假设λ所指每个反应单元中目标基因拷贝平均数,P代表在定量PCR实验中在n个反应单元中阴性单元的百分率。在95%置信水平下可以求得目标基因拷贝平均数λ的置信区间。置信区间越小则估算越精确。精度决定了这两个值可以接近且尚可通过系统检测的程度上限。[0035]关于λ的95%置信水平的置信区间:
[0036][0037][0038][0039][0040]
通过公式3得到λ的测量精度区间:
其中
图2是根据图1得到的测量初始靶基因浓度的绝对精度与反应单元阴性率之间的关系曲线。从图2中可以知道在相同反应单元阴性率的情况下,反应单元数量越大其初始靶基因浓度计算结果的精度越大。在阴性率很低或很高时,置信区间范围都变大,表示测量精度在降低。置信区间越小,测量精度越大。通过公式3可以求得关于阴性率的绝对测量精度值。
[0041][0042]
precisionU表示精度区间上限,precisionL表示精度区间下限。如图2所示当样本
阴性率约在20%时,测量精度是最高的。
[0043]图2中曲线分别表示了反应单元数量为10000、20000、30000、40000时测量初始靶基因浓度的精度与阴性率之间关系曲线。不同的反应单元数量的PCR系统可以得到相应的最大绝对精度Emax和最小绝对精度Emin。
[0044]图3表示根据测量初始靶基因浓度的绝对精度与反应单元阴性率之间的关系曲线得到用户指定精度为E时的低位阴性率PL和高位阴性率PU。[0045]用户指定的精度值E不能超过最大最小绝对精度范围,E必须满足条件:[0046]Emax>E>Emin(4)
6
CN 107784197 A[0047]
说 明 书
4/6页
一种PCR实验优化方法,无需预先或伴随设定标准曲线,可以定量分析目标靶基因
浓度。对于不同的测量精度需求,根据理论精度曲线,确定最优的数据分析方法。检测精度可动态设定,发现分析结果不理想时可以重新设定,重新进行分析。
[0048]当PCR扩增后反应单元阴性率在PL和PU之间时采用基于泊松理论浓度计算方法;当PCR扩增后反应单元阴性率小于PL或者大于PU时采用实时聚类浓度计算方法。[0049]基于泊松分布分析方法[0050]具体方法如下:
[0051]一个反应单元可能没有靶基因进入,也可能不止一个靶基因片段进入,当反应单元的数量n很大,并且总的靶基因拷贝数c也很大时,一个反应单元进入了k个目的靶基因片段的概率符合泊松分布:
[0052][0053]
其中λ为λ=c/n,c/n即所有反应单元的平均拷贝数。当k=0时表示没有目的基因
进入反应单元,上式可简化为p(k=0)=e-λ,对上述两边取对数(ln)得到:
[00][0055]
c=n*(-ln(1-q))(7)
[0056]其中p表示没有靶基因进入的概率,q表示有靶基因进入的概率(阳性率)且设每个反应单元的平均体积为v,则:v=u/n其中u是参与反应液总体积,反应液拷贝浓度为:
[0057]
实时聚类浓度计算方法[0059]具体方法如下详述:
[0060]基于实时聚类浓度计算方法采用多反应点检测,对反应点进行实时监测,每个反应周期内都进行数据检测。检测反应点的数据表达可以是光强、分子数、核酸数、蛋白数等具有表达分子或单一核酸或蛋白数的可以量化的一些物理或化学量。这种检测是一种动态的检测,从反应开始至反应结束都进行反应点数据检测。每个反应点的多周期检测的数据都要对应的存储起来,然后在反应扩增结束后绘制反应点的扩增曲线图,该扩增曲线图一般以荧光扩增曲线图为主。
[0061]反应单元中初始靶基因个数相差很小时,在扩增反应结束后终点荧光值的大小是很难区分荧光值大小差异不明显。在每个反应单元的实时扩增曲线的指数期对初始靶基因的个数是比较敏感的,可以通过检测该区段的扩增周期Ct值明显的区分开来。首先选取两个阈值R11、R22,R11 [0058] 其中Cn代表扩增周期,R是对应扩增周期的荧光强度值。 [00]荧光阈值R11与每个阳性反应单元扩增曲线在指数增长期都有一个交点,对应相应的扩增周期Cti。根据Cti进行聚类,获得k个聚类,每个聚类对应的中心值从大到小依次为 7 [0063] CN 107784197 A 说 明 书 5/6页 M1,M2,……,Mk;第j个聚类中包含的扩增周期值Cti的数量为Sj。由于反应单元通常为数万个,可以通过以下方法进行聚类:[0065]对阳性反应单元进行编号,140个为一组,编号i分别为1到140,可以得到M组Cti。把M组Cti放到同一个图表中,如图4所示。含有相同初始靶基因个数的反应单元,对应的扩增周期Cti会聚集在一起。 [0066]聚类是将物理或抽象对象的集合分成相似的对象类的过程。使得同一个簇中的对象之间具有较高的相似性,而不同簇中的对象具有较高的相异性。簇是数据对象的集合,这些对象与同一簇中的对象彼此相似,而与其他簇的对象相异。假设所有的反应单元初始靶基因含量只有k种,则通过数据挖掘聚类算法,可以求出k个聚类集及相对应的中心Mj和每个聚类集包含的点数Sj(j=1,2,3...k。)图4所示,中心值越大的聚类,其包含的靶基因个数越少,而反应单元中,初始靶基因个数是泊松分布,依次逐个递增。在正常的可测范围之内,中心值最大的聚类,其包含的反应单元的初始靶基因个数为1,随着聚类的中心值逐渐递减,其中包含的反应单元的初始靶基因个数逐个递增。[0067]误差平方和准则:若Sj是第j个簇cj中的对象数目,mj是这些对象的均值,O是簇cj中的一个点即: [0068][0069][0070] 误差平方和准则J就是所有簇的簇中各个对象与均值间误差平方和之和,即: 以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较 低。处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数J收敛。[0072]使用扩增周期聚类方法,最终可以得到含有一个靶基因的扩增周期M1,两个靶基因的扩增周期M2,以此类推得到含k个靶基因的扩增周期MK。PCR反应单元中的反应溶液是来源于同一初始反应液,可以认为在每个扩增周期内每个反应单元中靶基因的扩增效率ηi是相同的。只有在荧光信号指数扩增阶段,PCR产物荧光信号的对数值与起始模板量之间才存在线性对应关系,在此阶段进行定量计算才是准确的。只要满足公式9都可以看做是有效的扩增曲线指数增长期。[0073]如图5所示,分别取荧光阈值R11和R22。 [0074][0075] [0071] 其中X0代表该条扩增曲线的反应单元初始靶基因个数,ci1,ci2分别为是荧光阈值R11、R22与第i个反应单元的扩增曲线的交点所对应的扩增周期。RB为本底荧光值,RS为每个目标分子的荧光值。[0077]由公式(12)、(13)得到: [0076] 8 CN 107784197 A[0078][0079][0080] 说 明 书 6/6页 可以得到平均扩增效率: 基于此点,图5所示在扩增周期最后所对应的一条或一簇扩增曲线代表初始溶液 中只含有一个靶基因。取R11和该曲线的交点对应的扩增周期为Ct1,Ct1代表通过聚类得到的结果。 [0082][0083][0084] [0081] 其中Xj指第j个聚类集中每个阳性反应单元中初始靶基因平均个数。由公式(16)、 (17)得到第j个聚类集中靶基因的总个数:[0085]XXj=Sj*Xj (18) [0086]由公式18可以得到初始反应液靶基因的浓度C: [0087] [0088] 其中V代表反应单元中反应液的总体积。 [00]下面结合实施例对本发明作进一步说明。[0090]利用上述方法和常规方法对八组不同模板浓度的PCR芯片进行分析对比,结果如下表所示: [0091] PCR扩增完后,通过常规方法计算得到的结果和采用本发明的方法得到的结果进 行对比,发现采用本发明方法得到的靶基因浓度值更接近原始靶基因浓度真实值,大大提高了PCR实验中计算反应物初始浓度的精确度,且拓宽了满足精度要求的浓度检测范围。 [0092] 9 CN 107784197 A 说 明 书 附 图 1/3页 图1 图2 10 CN 107784197 A 说 明 书 附 图 2/3页 图3 图4 11 CN 107784197 A 说 明 书 附 图 3/3页 图5 12 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务