一、选择题
1.下列计算正确的是( ) A.2a+3b=5ab
B.( a-b )2=a 2-b 2 C.( 2x 2 )3=6x 6
x3=x5 D.x8÷
2.下列命题正确的是( ) A.有一个角是直角的平行四边形是矩形 C.有一组邻边相等的平行四边形是矩形
B.四条边相等的四边形是矩形 D.对角线相等的四边形是矩形
3.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( ) A.中位数
B.平均数
C.众数
D.方差
4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )
A.③④ B.②③ C.①④ D.①②③
5.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )
A.7分 B.8分 C.9分 D.10分
6.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=,∠ADC=,则竹竿AB与AD的长度之比为( )
A.
tan tanB.
sin sinC.
sin sinD.
cos cos,4),顶点C在x轴的负半轴7.如图,O为坐标原点,菱形OABC的顶点A的坐标为(3上,函数yk(x0)的图象经过顶点B,则k的值为( ) x
A.12 B.27 C.32 D.36
8.如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若
ABD48,CFD40,则E为( )
A.102 位数分别是( )
B.112 C.122 D.92
9.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中
A.15.5,15.5 B.15.5,15 C.15,15.5 D.15,15
10.如图,已知AB//CD//EF,那么下列结论正确的是( )
A.
ADBC DFCEB.
BCDF CEADC.
CDBC EFBED.
CDAD EFAF11.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )
A.1 个 B.2 个 C.3 个 D.4个
12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )
A.13 B.5 C.22 D.4
二、填空题
13.一列数a1,a2,a3,……an,其中a11,a2则a1a2a311,a3,1a11a2,an1,
1an1a2014__________.
14.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.
15.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高
度,进行了如下操作:
(1)在放风筝的点A处安置测倾器,测得风筝C的仰角∠CBD=60°; (2)根据手中剩余线的长度出风筝线BC的长度为70米; (3)量出测倾器的高度AB=1.5米.
根据测量数据,计算出风筝的高度CE约为_____米.(精确到0.1米,3≈1.73).
16.计算:82_______________.
17.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.
aa2b218.若=2,则2的值为________.
baab19.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′上.当∠A=30°,AC=10时,两直角顶点C,C′间的距离是_____.
20.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.
三、解答题
21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)图1中a的值为 ;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?
23.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:
(1)小聪上午几点钟从飞瀑出发?
(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;
(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?
24.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.
(1)求证:BC是半圆O的切线;
(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.
25.已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD. (1)求证:△ADC≌△BEC; (2)如果EC⊥BE,证明:AD∥EC.
【参】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】
分析:A.原式不能合并,错误;
B.原式利用完全平方公式展开得到结果,即可做出判断; C.原式利用积的乘方运算法则计算得到结果,即可做出判断; D.原式利用同底数幂的除法法则计算得到结果,即可做出判断. 详解:A.不是同类项,不能合并,故A错误; B.(a﹣b)2=a2﹣2ab+b2,故B错误; C.( 2x 2 )3=8x 6,故C错误; D.x8÷x3=x5,故D正确. 故选D.
点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.
2.A
解析:A 【解析】 【分析】
运用矩形的判定定理,即可快速确定答案. 【详解】
解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A. 【点睛】
本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.
3.A
解析:A 【解析】 【分析】
根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数. 【详解】
去掉一个最高分和一个最低分对中位数没有影响,故选A.
【点睛】
考查了统计量的选择,解题的关键是了解中位数的定义.
4.C
解析:C 【解析】
试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 解:①当x=1时,y=a+b+c=0,故本选项错误;
②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确; ③由抛物线的开口向下知a<0, ∵对称轴为1>x=﹣∴2a+b<0, 故本选项正确; ④对称轴为x=﹣
>0, >0,
∴a、b异号,即b>0, ∴abc<0, 故本选项错误;
∴正确结论的序号为②③. 故选B.
点评:二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0; (2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号; (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0; (4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.
5.B
解析:B 【解析】 【分析】
根据平均数的定义进行求解即可得. 【详解】
根据折线图可知该球员4节的得分分别为:12、4、10、6, 所以该球员平均每节得分=故选B. 【点睛】
本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法.
124106=8,
46.B
解析:B 【解析】 【分析】
在两个直角三角形中,分别求出AB、AD即可解决问题; 【详解】
在Rt△ABC中,AB=在Rt△ACD中,AD=∴AB:AD=故选B. 【点睛】
本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.
AC, sinAC, sinACsinAC=:, sinsinsin7.C
解析:C 【解析】 【分析】 【详解】 ∵A(﹣3,4), ∴OA=3242=5, ∵四边形OABC是菱形,
∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8, 故B的坐标为:(﹣8,4),
kk得,4=,解得:k=﹣32.故选C.
8x
考点:菱形的性质;反比例函数图象上点的坐标特征.
将点B的坐标代入y
8.B
解析:B 【解析】 【分析】
由平行四边形的性质和折叠的性质,得出ADBBDFDBC,由三角形的外角性质求出BDFDBC到结果. 【详解】
1DFC20,再由三角形内角和定理求出A,即可得2AD//BC,
ADBDBC,
由折叠可得ADBBDF, DBCBDF,
又
DFC40,
DBCBDFADB20,
又
ABD48,
ABD中,A1802048112,
EA112, 故选B. 【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB的度数是解决问题的关键.
9.D
解析:D 【解析】 【分析】 【详解】
根据图中信息可知这些队员年龄的平均数为:
132146158163172181=15岁,
268321该足球队共有队员2+6+8+3+2+1=22人,
则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D.
10.A
解析:A 【解析】 【分析】
已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可. 【详解】 ∵AB∥CD∥EF, ∴
ADBC. DFCE故选A. 【点睛】
本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.
11.C
解析:C
【解析】 【分析】 【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确; ②由横纵坐标看出,第一小时两人都跑了10千米,故②正确; ③由横纵坐标看出,乙比甲先到达终点,故③错误; ④由纵坐标看出,甲乙二人都跑了20千米,故④正确; 故选C.
12.A
解析:A 【解析】
试题分析:由题意易知:∠CAB=45°,∠ACD=30°. 若旋转角度为15°,则∠ACO=30°+15°=45°. ∴∠AOC=180°-∠ACO-∠CAO=90°. 在等腰Rt△ABC中,AB=4,则AO=OC=2. 在Rt△AOD1中,OD1=CD1-OC=3, 由勾股定理得:AD1=13. 故选A.
考点: 1.旋转;2.勾股定理.
二、填空题
13.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:
2011 2【解析】 【分析】
分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题. 【详解】 解:a11,a21111,a32,a41,… 1a121a21a3由此可以看出三个数字一循环,
2014÷3=671…1,则a1+a2+a3+…+a2014=671×(-1+故答案为
20111+2)+(-1)=. 222011. 2考点:规律性:数字的变化类.
14.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2
解析:2 【解析】
由D是AC的中点且S△ABC=12,可得SABDEC=
11SABC126;同理EC=2BE即2211BC,可得SABE124,又SABESABFSBEF,SABDSABFSADF等量33代换可知S△ADF-S△BEF=2
15.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621
解析:1. 【解析】
试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答. 试题解析:在Rt△CBD中, DC=BC•sin60°=70×∵AB=1.5,
∴CE=60.55+1.5≈62.1(米). 考点:解直角三角形的应用-仰角俯角问题.
3≈60.55(米). 216.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键 解析:2
【解析】 【分析】
先把8化简为22,再合并同类二次根式即可得解. 【详解】
8222-2=2.
故答案为2. 【点睛】
本题考查了二次根式的运算,正确对二次根式进行化简是关键.
17.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=
解析:10 【解析】
【分析】
试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解. 【详解】
(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2) =[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2) =(-2)2+2×3 =10 故答案为10 【点睛】
2ab+b2求解,整体思想的运用使运算更加简便. 本题考查了完全平方公式:(a±b)2=a2±
18.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本 解析:
3 2【解析】
分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可. 详解:∵
a=2,∴a=2b, b(ab)(ab)原式=
a(ab)=
ab a2bb3=. 2b2当a=2b时,原式= 故答案为
3. 2点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.
19.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM
解析:5 【解析】 【分析】
连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=
1AC=5,再根据∠2A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.
【详解】
解:如图,连接CC1,
∵两块三角板重叠在一起,较长直角边的中点为M, ∴M是AC、A1C1的中点,AC=A1C1, ∴CM=A1M=C1M=
1AC=5, 2∴∠A1=∠A1CM=30°, ∴∠CMC1=60°, ∴△CMC1为等边三角形, ∴CC1=CM=5, ∴CC1长为5. 故答案为5.
考点:等边三角形的判定与性质.
20.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n分别表示xy得到
解析:28 【解析】 【分析】
设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以利用15<【详解】
设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人, 根据题意得
,
n<30,n为正整数,
,用n分别表示x、y得到x+y=
n,然后
n为整数可得到n=5,从而得到x+y的值.
解得,
所以x+y=n,
而15<n<30,n为正整数,n为整数,
所以n=5, 所以x+y=28, 即该班共有28位学生. 故答案为28. 【点睛】
本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.
三、解答题
21.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛. 【解析】 【分析】 【详解】
试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.
试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%; 则a的值是25; (2)、观察条形统计图得:x1.5021.5541.6051.6561.703=1.61;
24563∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65; 将这组数据从小到大排列为,其中处于中间的两个数都是1.60, 则这组数据的中位数是1.60.
(3)、能; ∵共有20个人,中位数是第10、11个数的平均数, ∴根据中位数可以判断出能否进入前9名; ∵1.65m>1.60m, ∴能进入复赛
考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数 22.银杏树的单价为120元,则玉兰树的单价为180元. 【解析】
试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.
试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:
120009000150 x1.5x解得:x=120,经检验x=120是原分式方程的解,∴1.5x=180. 答:银杏树的单价为120元,则玉兰树的单价为180元.
23.(1)小聪上午7:30从飞瀑出发;(2)点B的实际意义是当小慧出发1.5 h时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h的速度按
原路返回,那么返回途中他11:00遇见小慧. 【解析】 【分析】
20=2.5(小(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷时),从10点往前推2.5小时,即可解答;
(2)先求GH的解析式,当s=30时,求出t的值,即可确定点B的坐标; 30=(3)根据50÷
5(小时)=1小时40分钟,确定当小慧在D点时,对应的时间点是310:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x小时后两人相遇,根据题意得:30x+30(x﹣)=50,解得:x=1,10+1=11点,即可解答. 【详解】
20=2.5(小时), (1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷∵上午10:00小聪到达宾馆, ∴小聪上午7点30分从飞瀑出发. (2)3﹣2.5=0.5,
∴点G的坐标为(0.5,50),
设GH的解析式为sktb,把G(0.5,50),H(3,0)代入得;
1k20kb50{2,解得:{,
b603kb0∴s=﹣20t+60, 当s=30时,t=1.5,
∴B点的坐标为(1.5,30),点B的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km; 30=(3)50÷
551(小时)=1小时40分钟,12﹣=10, 333∴当小慧在D点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x小时后两人相遇,根据题意得:30x+30(x﹣10+1=11=11点,
∴小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返回途中他11点遇见小慧. 24.(1)见解析;(2)AD=4.5. 【解析】 【分析】
(1)若证明BC是半圆O的切线,利用切线的判定定理:即证明AB⊥BC即可; (2)因为OC∥AD,可得∠BEC=∠D=90°,再有其他条件可判定△BCE∽△BAD,利用相似三角形的性质:对应边的比值相等即可求出AD的长. 【详解】
1)=50,解得:x=1, 3(1)证明:∵AB是半圆O的直径, ∴BD⊥AD, ∴∠DBA+∠A=90°, ∵∠DBC=∠A,
∴∠DBA+∠DBC=90°即AB⊥BC, ∴BC是半圆O的切线; (2)解:∵OC∥AD, ∴∠BEC=∠D=90°, ∵BD⊥AD,BD=6, ∴BE=DE=3, ∵∠DBC=∠A, ∴△BCE∽△BAD,
CEBE43,即; BDAD6AD∴AD=4.5 【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质. 25.(1)详见解析;(2)详见解析. 【解析】 【分析】
(1)根据两锐角互余的关系可得∠ACD=∠BCE,利用SAS即可证明△ADC≌△BEC;(2)由△ADC≌△BEC可得∠ADC=∠E=90°,根据平行线判定定理即可证明AD//EC. 【详解】
(1)∵EC⊥DM, ∴∠ECD=90°, ∴∠ACB=∠DCE=90°,
∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°, ∴∠ACD=∠BCE, ∵CD=CE,CA=CB, ∴△ADC≌△BEC(SAS). (2)由(1)得△ADC≌△BEC, ∵EC⊥BE,
∴∠ADC=∠E=90°, ∴AD⊥DM, ∵EC⊥DM, ∴AD∥EC. 【点睛】
本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻
找全等三角形全等的条件,属于中考常考题型.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务