MetodSaniga1andPetrPracna2
AstronomicalInstitute,SlovakAcademyofSciencesSK-05960Tatransk´aLomnica,SlovakRepublic
(msaniga@astro.sk)
and
2
J.Heyrovsk´yInstituteofPhysicalChemistry,v.v.i.,AcademyofSciencesoftheCzechRepublic,Dolejˇskova3,CZ-18223Prague8,CzechRepublic
(pracna@jh-inst.cas.cz)
1
arXiv:0807.1790v1 [math-ph] 11 Jul 2008ProjectivelatticegeometriesoverunitalassociativeringsR(see,e.g.,[1]andreferencestherein)representaveryimportantgeneralizationofclassical(field)projectivespaces,beingendowedwithanumberofremarkablefeaturesnotexhibitedbythelatter.Oneofthemoststrikingdifferencesis,forcertainR,theexistenceoffreecyclicsubmodulesgeneratedbynon-unimodularvectorsofthefreeleftR-moduleRn,n≥1.Inacoupleofrecentpapers[2,3],anin-depthanalysishasbeenperformedofsuchnon-unimodularportionsofthelatticegeometriesforRbeingtheringofternions,i.e.,aringisomorphictothatofuppertriangular2×2matriceswithentriesfromanarbitrarycommutativefieldF.Ithasbeenfoundthatforanyn≥2thesenon-unimodularfreecyclicsubmodulesofRncanbeassociatedwiththelinesofPG(n,F),then-dimensionalprojectivespaceoverFsittinginthemiddleofsuchnon-unimodularworld.Inthefinitecase,F=GF(q),basiccombinatorialpropertiesofsuchconfigurationshavebeenderivedandillustratedinexhaustivedetailonthesimplest,n=q=2case—dubbedtheFano-Snowflakegeometry.InthepresentpaperweshallhaveanotherlookattheFano-SnowflakeandshowthatthisgeometryadmitsanintriguingdecompositionwithrespecttotheJacobsonradicaloftheringinquestion.
Tothisendinview,wefirstcollectthenecessarybackgroundinformationfrom[2,3].Weconsideranassociativeringwithunity1(=0),R,anddenotethefreeleftR-moduleonn+1generatorsoverRbyRn+1.ThesetR(r1,r2,···,rn+1),definedasfollows
R(r1,r2,···,rn+1):=(αr1,αr2,···,αrn+1)|(r1,r2,···,rn+1)∈Rn+1,α∈R,(1)isaleftcyclicsubmoduleofRn+1.Anysuchsubmoduleiscalledfreeifthemappingα→(αr1,αr2,···,αrn+1)isinjective,i.e.,if(αr1,αr2,···,αrn+1)arealldistinct.Next,weshallcallavector(r1,r2,···,rn+1)∈Rn+1unimodularifthereexistelementsx1,x2,···,xn+1inRsuchthat
r1x1+r2x2+···+rn+1xn+1=1.
1
(2)
Table1:Addition(left)andmultiplication(right)inR♦.
+0
12
34
56
7
3
5
1
6
2
4
0
4
7
6
1
0
3
2
6
0
7
7
0
7
0
0
7
7
4
0
2
6
5
1
4
0
5
3
3
0
5
6
6
0
6
7
5
4
2
3
2
0
3
5
3
6
5
6
0
×0
0
1
2
3
4
5
6
7
Itisaverywell-knownfact(see,e.g.,[4]–[7])thatif(r1,r2,···,rn+1)isunimodular,thenR(r1,r2,···,rn+1)isfree;anysuchfreecyclicsubmodulerepresentsapointofthen-dimensionalprojectivespacedefinedoverR[5].Theconversestatement,however,isnotgenerallytrue.Thatis,thereexistringswhichalsogiverisetofreecyclicsubmodulesfeaturingexclusivelynon-unimodularvectors.Thefirstcasewhenthisoccursisthesmallest(non-commutative)ringofternions,R♦:
ab
R♦≡|a,b,c∈GF(2).(3)
0cFromthisdefinitionitisreadilyseenthattheringcontainstwomaximal(two-sided)ideals,
0b
I1=|b,c∈GF(2)(4)
0cand
I2=
a0
b0
|a,b∈GF(2),
(5)
whichgiverisetoanon-trivial(two-sided)JacobsonradicalJ,
0b
J=I1∩I2=|b∈GF(2).
00AsforourfurtherpurposesitwillbemoreconvenienttoworkwithshallrelabeltheelementsofR♦asfollows
0010111
0≡,1≡,2≡,3≡
00010100010010
4≡,5≡,6≡,7≡
0100000
(6)
numbersthanmatrices,we1
011
,.
(7)
TheadditionandmultiplicationintheringisthatofmatricesoverGF(2),whichinourcompactnotationreadsasshowninTable1.Thetwomaximalidealsnowacquiretheform
I1:={0,4,6,7}and
I2:={0,3,5,6},
andtheJacobsonradicalreads,
J=I1∩I2={0,6}.
2
(10)(9)(8)
3
Thereexistaltogether21freecyclicsubmodulesofR♦whicharegeneratedbynon-unimodularvectors.Takingtheircompletelistfrom[2]oneseesthattheycanbeseparatedintothefollowingthreedisjointsets
R♦(6,6,7)=R♦(6,6,4)={(0,0,0),(6,6,7),(6,6,4),(6,6,0),(0,0,4),(6,6,6),(0,0,6),(0,0,7)},R♦(6,7,6)=R♦(6,4,6)={(0,0,0),(6,7,6),(6,4,6),(6,0,6),(0,4,0),(6,6,6),(0,6,0),(0,7,0)},R♦(7,6,6)=R♦(4,6,6)={(0,0,0),(7,6,6),(4,6,6),(0,6,6),(4,0,0),(6,6,6),(6,0,0),(7,0,0)},R♦(0,6,7)=R♦(0,6,4)={(0,0,0),(0,6,7),(0,6,4),(0,6,0),(0,0,4),(0,6,6),(0,0,6),(0,0,7)},R♦(0,7,6)=R♦(0,4,6)={(0,0,0),(0,7,6),(0,4,6),(0,0,6),(0,4,0),(0,6,6),(0,6,0),(0,7,0)},R♦(6,0,7)=R♦(6,0,4)={(0,0,0),(6,0,7),(6,0,4),(6,0,0),(0,0,4),(6,0,6),(0,0,6),(0,0,7)},R♦(7,0,6)=R♦(4,0,6)={(0,0,0),(7,0,6),(4,0,6),(0,0,6),(4,0,0),(6,0,6),(6,0,0),(7,0,0)},R♦(6,7,0)=R♦(6,4,0)={(0,0,0),(6,7,0),(6,4,0),(6,0,0),(0,4,0),(6,6,0),(0,6,0),(0,7,0)},R♦(7,6,0)=R♦(4,6,0)={(0,0,0),(7,6,0),(4,6,0),(0,6,0),(4,0,0),(6,6,0),(6,0,0),(7,0,0)},R♦(4,6,7)=R♦(7,6,4)={(0,0,0),(4,6,7),(7,6,4),(6,6,0),(4,0,4),(0,6,6),(6,0,6),(7,0,7)},R♦(4,7,6)=R♦(7,4,6)={(0,0,0),(4,7,6),(7,4,6),(6,0,6),(4,4,0),(0,6,6),(6,6,0),(7,7,0)},R♦(6,4,7)=R♦(6,7,4)={(0,0,0),(6,4,7),(6,7,4),(6,6,0),(0,4,4),(6,0,6),(0,6,6),(0,7,7)},R♦(4,4,6)=R♦(7,7,6)={(0,0,0),(4,4,6),(7,7,6),(6,6,6),(4,4,0),(0,0,6),(6,6,0),(7,7,0)},R♦(4,6,4)=R♦(7,6,7)={(0,0,0),(4,6,4),(7,6,7),(6,6,6),(4,0,4),(0,6,0),(6,0,6),(7,0,7)},R♦(6,4,4)=R♦(6,7,7)={(0,0,0),(6,4,4),(6,7,7),(6,6,6),(0,4,4),(6,0,0),(0,6,6),(0,7,7)},R♦(0,4,7)=R♦(0,7,4)={(0,0,0),(0,4,7),(0,7,4),(0,6,0),(0,4,4),(0,0,6),(0,6,6),(0,7,7)},R♦(4,0,7)=R♦(7,0,4)={(0,0,0),(4,0,7),(7,0,4),(6,0,0),(4,0,4),(0,0,6),(6,0,6),(7,0,7)},R♦(4,7,0)=R♦(7,4,0)={(0,0,0),(4,7,0),(7,4,0),(6,0,0),(4,4,0),(0,6,0),(6,6,0),(7,7,0)},R♦(4,4,7)=R♦(7,7,4)={(0,0,0),(4,4,7),(7,7,4),(6,6,0),(4,4,4),(0,0,6),(6,6,6),(7,7,7)},R♦(4,7,4)=R♦(7,4,7)={(0,0,0),(4,7,4),(7,4,7),(6,0,6),(4,4,4),(0,6,0),(6,6,6),(7,7,7)},R♦(7,4,4)=R♦(4,7,7)={(0,0,0),(7,4,4),(4,7,7),(0,6,6),(4,4,4),(6,0,0),(6,6,6),(7,7,7)},accordingasthenumberofJacobsonradicalentriesinthegeneratingvector(s)istwo,oneorzero,respectively.EmployingthepictureoftheFano-Snowflakegivenin[2](reproduced,forconvenience,inFigure1),thestructureofandrelationbetweenthethreesetscanberepresenteddiagrammaticallyasshowninFigure2.AseachsubmoduleanswerstoasinglelineoftheassociatedcoreFanoplane,thedecompositionoftheFano-Snowflakeinducesanintriguingfactorizationofthelinesoftheplaneitself.ThisisdepictedinFigure3,bottompanel,anditisseentofundamentallydifferfromthecorrespondingpartitioningoftheFanoplanewithrespecttotheJacobsonradicalofitsgroundfieldGF(2)({0}),namelyGF(2)(1,0,0)={(0,0,0),(1,0,0)},GF(2)(0,1,0)={(0,0,0),(0,1,0)},GF(2)(0,0,1)={(0,0,0),(0,0,1)},GF(2)(1,1,0)={(0,0,0),(1,1,0)},GF(2)(1,0,1)={(0,0,0),(1,0,1)},GF(2)(0,1,1)={(0,0,0),(0,1,1)},GF(2)(1,1,1)={(0,0,0),(1,1,1)},
asdisplayedinFigure3,toppanel.
TheoriginofthefactorizationoftheFanoplanewhenrelatedtoitsgroundfieldGF(2)iseasytounderstand:thenumberoftheJacobsonradicalentries(i.e.,onlyzerosinthiscase)inthecoordinatesofaline(and,byduality,ofapointaswell)hasaclearmeaningwithrespecttothetriangleofbasepointsofthecoordinatesystem.SomethingsimilarholdsobviouslyforthefactorizationoftheFano-Snowflakewithrespecttoitsternioniccoordinates,butpassingtotheembeddedFanoplanethislinkseemstobelostorsubstantiallydistorted.Figure2illustratesthisfactquitenicely:inthetopfigureallthepolygonspassthroughthethreecorners/verticesofthebasictriangle,inthemiddlefigureallbranchesgothroughthepointsoneachsideofthe
3
Figure1:TheFano-Snowflake—adiagrammaticillustrationofaveryintricaterelationbetween
3
the21freeleftcyclicsubmodulesgeneratedbynon-unimodularvectorsofR♦.Eachcircle
33
representsavectorofR♦(infact,ofI1),itssizebeingroughlyproportionaltothenumberofsubmodulespassingthroughthegivenvector.Asthe(0,0,0)tripleisnotshown,eachsubmoduleisrepresentedbysevencircles(threebig,twomedium-sizedandtwosmall)lyingonacommonpolygon.Thesmallcirclesstandforthevectorsgeneratingthesubmodules.ThebigcirclesrepresentthevectorswhoseallthethreeentriesarefromJ;thesevectorscorrespondtothepointsoftheFanoplane.ThesevencolorswerechoseninsuchawaytomakealsothelinesoftheFanoplane,i.e.,theintersectionsofthesubmoduleswithJ3,readilydiscernible.See[2]and/or[3]formoredetails.
4
Figure2:Asketchyillustrationofthe9–9–3decompositionofthesetoffreecyclicsubmodulescomprisingtheFano-SnowflakewithrespecttotheJacobsonradicalofR♦accordingasthenumberofradicalentriesinthesubmodule’sgeneratingvector(s)istwo(top),one(middle)orzero(bottom),respectively.
5
Figure3:Acomparisonofthe“ternion-induced”6–7–3factorizationofthelinesoftheFanoplane(bottom)withtheordinary3–3–1one(top).Noteaprincipalqualitativedifferencebetweenthetwofactorizationsasthethreesets(factors)arepairwisedisjointinthelattercasebutnotintheformerone.
trianglewhicharenotvertices,whereasinthebottomfigureallthebranchessharetheonlypointwhichisoffthereferencetriangle.Itistheintersectionsofthebranches/polygonswiththecoreFanoplanewhichbehave“strange”andgiverisetothefundamentaldifferencebetweenthetwofactorizationsoftheFanoplaneshowninFigure3.
Theabove-describedobservationsclearlydemonstratethatthereismoretothealgebraicstructureoftheFanoplanethanmeetstheeye.Theplanewhenconsideredofitsownisfoundto“reveal”quitedifferentaspectscomparedwiththecasewhenbeingembeddedintoamoregen-eral,non-unimodularprojectivelatticesetting.Thisdifferenceislikelytogetmorepronounced,andmoreintricateaswell,aswepasstohigherorderringsgivingrisetomorecomplexformsofFano-Snowflakes.AkeyquestionistofindoutwhethertheSnowflakes’decompositionpatternsandtheirinducedfactorizationsofthelinesofthecoreFanoplanesremainqualitativelythesameasintheternioniccase;ourpreliminaryanalysisofsuchstructuresoveraparticularclassofnon-commutativeringsofordersixteenandhavingtwelvezero-divisorsindicatesthatthismightbeso.Anotherworth-pursuinglineofexplorationistostaywithternionsbutfocusonhigher-order(q>2)and/orhigher-dimensional(n>2)“Snowflake”geometriesandtheircoreprojectiveplanesand/orspaces.Finding,however,ageneralbuild-upprincipleforthesere-markablegeometricalstructureswithrespecttothepropertiesofdefiningringscurrentlyseemsatrulydifficult,yetextremelychallengingtaskdueto“ubiquity”oftheFanoplaneinvariousmathematicalandphysicalcontexts(see,e.g.,[8]).
Acknowledgments
TheworkwaspartiallysupportedbytheVEGAgrantagencyprojectsNos.6070and7012,theCNRS-SAVProjectNo.20246andbytheActionAustria-SlovakiaprojectNo.58s2.WethankHansHavlicek(ViennaUniversityofTechnology)forvaluablecommentsandsuggestions.
6
References
[1]Brehm,U.,Greferath,andSchmidt,S.E.:1995,ProjectiveGeometryonModularLattices,
inHandbookofIncidenceGeometry,F.Buekenhout(ed.),Elsevier,Amsterdam,pp.1115–1142.
[2]Saniga,M.,Havlicek,H.,Planat,M.,andPracna,P.:2008,Twin“Fano-Snowflakes”
overtheSmallestRingofTernions,Symmetry,IntegrabilityandGeometry:MethodsandApplications,Vol.4,Paper050,7pages(arXiv:0803.4436).
[3]Havlicek,H.,andSaniga,M.:2008,Vectors,CyclicSubmodulesandProjectiveSpaces
LinkedwithTernions,JournalofGeometry,submitted(arXiv:0806.3153).
[4]Veldkamp,F.D.:1981,ProjectivePlanesoverRingsofStableRang2,GeometriaeDedi-cata,Vol.11,pp.285–308.
[5]Veldkamp,F.D.:1995,GeometryoverRings,inHandbookofIncidenceGeometry,F.
Buekenhout(ed.),Elsevier,Amsterdam,pp.1033–1084.
[6]Herzer,A.:1995,ChainGeometries,inHandbookofIncidenceGeometry,F.Buekenhout
(ed.),Elsevier,Amsterdam,pp.781–842.
[7]Blunck,A.,andHerzer,A.:2005,Kettengeometrien–EineEinf¨uhrung,Berichteausder
Mathematik,ShakerVerlag,Aachen.
[8]Brown,E.:2002,TheManyNamesof(7,3,1),MathematicsMagazine,Vol.75,pp.83–94.
7
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务