您好,欢迎来到年旅网。
搜索
您的当前位置:首页乙醇胺修饰的石墨烯量子点的合成及生物成像应用

乙醇胺修饰的石墨烯量子点的合成及生物成像应用

来源:年旅网
第34卷第11期 中国材料进展 MATERIALS CHINA Vo1.34 No.11 NOV.2015 2015年11月 乙醇胺修饰的石墨烯量子点的合成及生物成像应用 曾敏翔,陈 翔,谢虞清,管 剑,甄杰明,朱先军,杨上峰 (中国科学技术大学材料科学与工程系中国科学院能量转换材料重点实验室 合肥微尺度物质科学国家实验室,安徽合肥,230026) 摘 要:作为新一代基于碳材料的量子点,乙醇胺(Ethanolamine,ETAM)修饰的石墨烯量子点(ETAM-GQDs)成功地通过一 步水热法被合成出来,并通过实验显示出在生物成像应用中的潜力。以柠檬酸作为碳源、甘氨酸作为桥联剂,通过乙醇胺/去 离子水共溶剂水热法,成功地实现了在石墨烯量子点表面修饰乙醇胺得到ETAM—GQDs。通过原子力显微镜(ArM)、光电子 能谱(XPS)、拉曼光谱等对ETAM—GQDs进行表征,在测得ETAM—GQDs的稳态荧光光谱后,通过使用硫酸奎宁作为参比,在 365 nm紫外光激发下测得的ETAM-GQDs的量子产率为38.2%。除此之外,活体细胞HL7702和ETAM—GQDs共培养后,通过 荧光成像实验证实了ETAM—GQDs可以作为有效的生物成像剂。 关键词:石墨烯;量子点;光致发光;生物成像 中图分类号:069 文献标识码:A 文章编号:1674—3962(2015j l1—0841—06 One-Pot Synthesis and Bioimaging Application of Ethanolamine.Grafted Graphene Quantum Dots ZENG Minxiang,CHEN Xiang,XIE Yuqing,GUAN Jian,ZHEN Jieming, ZHU Xianjun,YANG Shangfeng (CAS Key Laboratory of Materials for Energy Conversion,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China(USTC),Hefei 230026,China) Abstract:Ethanolamine—grafted graphene quantum dots(ETAM—GQDs)as a novel type of carbon—based quantum dots have been successfully synthesized via a facile one.pot hydrothermal approach.and show potential application in bioimag— ing.The hydrothermal synthesis of ETAM—GQDs was accomplished by introducing ethanolamine(ETAM)as the CO.so1. vent blending deionized water while citric acid and glycine are used as the main carbon source and bridge for condensation respectively.The size distribution of ETAM—GQDs was determined by AFM and TEM.The photoluminescent f PL1 quan— turn yield of ETAM—GQDs was measured to be 38.2%under 365 nm light excitation by using quinine sulphate as a stand— ard.The biocompatibility of ETAM—GQDs evaluated by MTT assay indicated the lOW toxicity of ETAM—GQDs at concentra. tions below 1 mg/mL.Fluorescent imaging of living HL7702 cells incubated with ETAM—GQDs demonstrated that ETAM— GQDs can be applied as an effective bioimaging agent. Key WOrds: graphene; quantum dots; photoluminescence; bioimaging 1 前 言 具有光致发光特性的碳材料量子点,由于其低成 本、低毒性、良好的化学惰性和生物相容性,近年来吸 引了越来越多的研究兴趣 。作为传统半导体量子 点的替代材料,基于碳材料的量子点具有广阔的应用, 其中包括生物成像和生物标记 催化 用 、荧光墨水” 、光 、光致发光二极管以及太阳能电池等应 。从形貌和尺寸来看,基于碳材料量子点可分 为两大类:碳量子点和石墨烯量子点。碳量子点(CDs) 通常被定义为尺寸小于10 nm的类球形碳颗粒 ’ ; 收稿日期:2015—07—15 而石墨烯量子点(GQDs)则具有单层或多层石墨烯片状 结构,并且其平面直径往往小于100 nm -9,20 。由于 基金项目:国家自然科学基金资助项目(21371164) 第一作者:曾敏翔,男,1992年生,博士研究生 通讯作者:杨上峰,男,1975年生,教授,博士生导师,Email sfyang@ustc.edu.cn 显著的量子限域效应和边界效应,石墨烯量子点具有许 多有趣的特性并且近年来受到了越来越多的研 究 。 。到目前为止,合成石墨烯量子点的方法包 DOI:10.7502/j.issn.1674—3962.2015.11.06 842 括水热/溶剂热切割法 、电化学氧化法 中国材料进展 、等离子 第34卷 的。在一个典型的合成过程中,将1.0 g(4.8毫摩尔)柠 氧处理法 、化学全合成 、酸解法和氧化分解法 等 。 。为了改善石墨烯量子点的表面化学特 檬酸一水合物和O.3 g(4.0毫摩尔)甘氨酸溶解在5 ml 2一 氨基乙醇(ETAM)和水的混合溶剂(4:1,体积比)并超声 性 。 ,化学前驱体常常被用来表面修饰和引入其 他元素的掺杂。2011年李等 报道了石墨烯量子点与 低聚端基胺聚乙二醇反应得到蓝色荧光的修饰石墨烯量 30 rain。然后将得到的浓混合液在特氟隆高压釜中进行 水热加热200 oC、5 h。得到的深绿色粗产物用甲醇/丙 酮作为洗脱剂,利用柱色谱纯化得到了乙醇胺修饰石墨 子点,其尺寸为5~19 nm,量子产率为7.4%。同年, Muellen等 利用多环芳烃作为前驱体(Hexa.Peri. Hexabenzoeoronene,HBC)合成了多色碟状石墨烯量子 点。尽管这些方法都能得到修饰石墨烯量子点,但是由 于这些分步合成修饰法多使用昂贵的化学前驱体和复杂 的操作流程,因而难以直接应用到工业生产 。 ' 点有待研究发展。 本文报道以柠檬酸作为碳源、甘氨酸作为桥联剂、 烯量子点(ETAM—GQDs)。同时,也合成了参比石墨烯量 子点(CAG—GQDs),即用纯的去离子水为溶剂不添加乙 醇胺,其他步骤相同 。 2.3细胞毒性测试 HL7702细胞在5×10’细胞/皿(Coming公司430166) 。 接种。经6 h培养将细胞附着在培养皿后,将基质换成不 同浓度的ETAM-GQDs(或CAG-GQDs)的DMEM溶液,并 以无GQDs的DMEM培养基作为对照。孵育24 h后,用 因此,一种能够快速合成高量子产率的修饰石墨烯量子 PBS缓冲溶液洗涤三次以除去多余的GQDs。荧光成像使 用蔡司LSM710共聚焦显微镜,并选用405 nm激光激发。 通过乙醇胺/去离子水共溶剂水热法,一步合成乙醇胺修 饰的石墨烯量子点(ETAM—GQDs)。 不同的激发波长荧光成像是通过使用不同的滤光片进 行的。 2 实2.1 材验 料 3结果与讨论 3.1 石墨烯量子点的合成与表征 柠檬酸(C H O ・H:O,99.5%),甘氨酸(99.5%), 2一氨基乙醇(乙醇胺,ETAM,99.O%),所有化学品使用 前未经进一步纯化。 2.2石墨烯量子点合成 石墨烯量子点合成过程如图1所示。使用乙醇胺 作为共溶剂,并同时作为表面修饰的前驱体,通过高 温条件下与羧基形成的酰胺键形式构建起聚合物框 架,后者在高温条件下脱水脱羧碳化,最终形成石墨 烯骨架 ” 。 ETAM—GQDs是将混合碳源(柠檬酸和甘氨酸)和表 面钝化剂(乙醇胺)作为前驱体,一步水热处理而合成 纛 Y r H 一一 制H (ETAM) HO+ O condensation H2N、 LoH ETAM—GQDs 图1 ETAM—GQDs合成过程 Fig.1 Schematic illustration of a synthetic route of ETAM—GQDs involving condensation to carbonization ETAM—GQDs的形貌通过原子力显微镜(AFM)来 共存 。 表征。如图2所示,ETAM.GQDs的直径分布在20~ 40 nm的范围,并且其平均高度为1.6 nm,这些参数 为了研究ETAM GQDs表面官能团,对其进行 射 线光电子能谱(XPS能谱)表征。如图2e所示,ETAM— GQDs主要由碳、氧、氮3种元素构成,并且摩尔比为 10:3:1。高分辨率的C1 s XPS光谱图显示3种不同化学 环境的碳分别在284.6,285.8和287.7电子伏特有峰 值,而这些峰值归属于C=C,C—O/C—N,C=O,证明了 与其他方法制备的GQDs类似 。由于拉曼光谱能 为碳纳米材料的电子结构提供灵敏而有价值的信息, 因而使用拉曼光谱进一步探究了石墨烯量子点的结构 。 在图2d拉曼光谱中,位于1 380 em 和1 585 em。。的两个 宽峰分别属于sp3碳原子振动的D带与sp2碳原子的G带, 羧酸、羟基和酰胺基团的存在,证实了ETAM成功修饰 证实了石墨烯量子点的结构中sp2碳原子和s 碳原子 了石墨烯量子点。 第11期 曾敏翔等:乙醇胺修饰的石墨烯量子点的合成及生物成像应用 845 [8]Shen J,Zhu Y,Yang X,et a1.Graphene Quantum Dots:Emer— gent Nanolights for Bioimaging,Sensors,Catalysis and Photovohaic Devices[J].Chemical Communications,2012,48(31):3 686 —3 699. [9] Baker S N,Baker G A.Luminescent Carbon Nanodots:Emergent Nanolights[J].Angewandte Chemic International Edition,2010, 49(38):6 726—6 744. [10]Cao L,Wang X,Meziani M J,et a1.Carbon Dots for Muhipho— ton Bioimaging[J].Journal of the American Chemical Society, 2007,129(37):11 318—11 319. [11]Chen B,Li F,Li S,et a1.Large Scale Synthesis of Photolumi— nescent Carbon Nanodots and Their Application for Bioimaging [J].Nanoscale,2013,5(5):1 967—1 971. [1 2]Gokhale R,Singh P.Blue Luminescent Graphene Quantum Dots by Photochemical Stitching of Small Aromatic Molecules:Fluores— cent Nanoprobes in Cellular Ima ̄ng[J].Panicle&Particle Sys— terr ̄Characterization,2014,31(4):433—438. [13]Zhu L,Yin Y,Wang C F,et a1.Plant Leaf-Derived Fluorescent Carbon Dots for Sensing,Patterning and Coding[J].Journal of Materials Chem ̄try C,2013,1(32):4 925—4 932. [14]Zhang M,Yao Q,Guan W,et a1.Layered Double Hydroxide- Supported Carbon Dots as an Efifcient Heterogeneous Fenton—like Catalyst for Generation of Hydroxyl Radicals[J].The Journal of Physical Chemistry C,2014,118(19):10 441—10 447. [15]Li H,Liu R,Kong W,et a1.Carbon Quantum Dots with Photo— Generated Proton Property as Efifcient Visible Light Controlled acid Catalyst[J].Nanoscale,2014,6(2):867—873. [16]Chung W,Jung H,Lee C H,et a1.Extremely High Color Ren- dering White Light from Surface Passivated Carbon Dots and Zn— doped AgInS 2 Nanocrystals[J].Journal ofMaterials Chemistry C, 2014,2(21):4 227—4 232. [17]Zhu z,Ma J,Wang Z,et a1.Efficiency Enhancement ofPerovs- kite Solar Ceils Through Fast Electron Extraction:The Role of Gra. phene Quantum Dots[J].Journal ofthe American Chemical Socie— ty,2014,136(10):3 760—3 763. [18]Kim J K,Park M J,Kim S J,et a1.Balancing Light Absorptivity and Carrier Conductivity of Graphene Quantum Dots for High—-Efif-- eiency Bulk HeteroJunction Solar Cells[J].ACS nano,2013,7 (8):7 207—7 212. [19]Wang L,Wang Y,Xu T,et a1.Gram—Scale Synthesis of Single— Crystalline Graphene Quantum Dots with Superior Optical Proper一 ties[J].Nature 2014,5 [20] Ponomarenko L A,Schedin F,Katsnelson M I,et a1.Chaotic Di- rac Billiard in Graphene Quantum Dots[J].Science,2008,320 (5 874):356—358. [21] Zhu S,Tang S,Zhang J,et a1.Control the Size and Surface Chemistry of Graphene for the Rising Fluorescent Materials[J]. Chemical Communications,2012,48(38):4 527—4 539. [22] Pan D,Zhang J,Li Z,et a1.Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots [J].Advanced Materials,2010,22(6):734—738. [23]IJi L,Wu G,Yang G,et a1.Focusing on Luminescent Graphene Quantum Dots:Current Status and Future Perspectives[J]. Nanoscale,2013,5(10):4 Ol5—4 039. [24]Zhou X,Zhang Y,Wang C,et a1.Photo—Fenton Reaction of Graphene Oxide:a New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage[J].ACS Nano,2012,6(8):6 592— 6 599. [25]Yah X,Cui X,Li B,et a1.Large,Solution—Processable Gra— phene Quantum Dots as Light Absorbers for Photovohaics[J]. Nano letters,2010,10(5):1 869—1 873. [26]IIjn L,Zhang S.Creating High Yield Water Soluble Luminescent Graphene Quantum Dots Via Exfoliating and Disintegrating Carbon Nanotubes and Graphite Flakes[J].Chemical Communications, 2012,48(82):10 177—10 179. [27]Lu J,Yeo P S E,Gan C K,et a1.Transforming C60 Molecules into Graphene Quantum Dots[J].Nature Nanoteehnology,201 1, 6(4):247—252. [28]lJj Y,Zhao Y,Cheng H,et a1.Nitrogen-Doped Grapherie QHaD- turn Dots with Oxygen—Rich Functional Groups[J].Journal of the American Chemical Society,2011,134(1):15—18. [29]Shen J,Zhu Y,Chen C,et a1.Facile Preparation and Upconve- rsion Luminescenee of Graphene Quantum Dots[J].Chemical Communications,2011,47(9):2 580—2 582. [30]Li Q,Zhang S,Dai L,et a1.Nitrogen-Doped Colloidal Gra— phene Quantum Dots and Their Size—Dependent Electrocatalytic Activity ofr the Oxygen Reduction Reaction[J].Journal ofthe A— merican Chemical Society,2012,134(46):18 932—18 935. [31]Liu R,Wu D,Feng X,et a1.Bottom—up Fabrication of Photolu— mineseent Graphene Quantum Dots with Uniform Morphology[J]. Journal ofthe American Chemical Society,2011,133(39):15 221—15 223. [32]Zhu S,Meng Q,Wang L,et a1.Highly Photolumineseent Car— bon Dots for Muhicolor Patterning,Sensors and Bioimaging[J]. Angewandte Chemic,2013,125(14):4 045—4 049. [33]Wang J,Wang C F,Chen S.Amphiphilic Egg—Derived Carbon Dots:Rapid Plasma Fabrication,Pyrolysis Process and Muhicolor Printing Patterns[J].Angewandte Chemic,2012,124(37):9 43l一9 435. [34]Wu X,Tian F,Wang W,et a1.Fabrication of Highly Fluores. cent Graphene Quantum Dots Using L—glutamic Acid for in Vitro/in Vivo Imaging and Sensing[J].Journal of Materials Chemistry C, 2013,1(31):4 676—4 684. [35]Huang J J,Zhong Z F,Rong M Z,et a1.An Easy Approach of Preparing Strongly Luminescent Carbon Dots and Their Polymer Based Composites for Enhancing Solar Cell Efifciency[J].Car. bon,2014,70:190—198. [36]Qu S,Wang X,Lu Q,et a1.A Biocompatible Fluorescent Ink 846 中国材料进展 26(20):3 297—3 303. 第34卷 Based on Water—Soluble Luminescent Carbon Nanodots[J].Ange— wandte Chemic,2012,124(49):12 381—12 384. [48]Dong Y,Pang H,Yang H B,et a1.Carbon-Based Dots Co。 doped with Nitrogen and Sulfur for High Quantum Yield and Exci— [37]Li H,He X,Kang Z,et a1.Water Soluble Fluorescent Carb0n Quantum Dots and Photocatlayst Design[J].Angewandte Chemic International Edition,2010,49(26):4 430—4 434. tation-Independent Emission[J].Angewandte Chemic lnternation— al Edition,2013,52(30):7 800—7 804. [38]Yang S T,Wang X,Wang H,et a1.Carbon Dots as Nontoxic [49]Anilkumar P,Wang X,Cao L,et a1.Toward Quantitatively Flu, and High・Performance Fluorescence Imaging agents[J].The Jour- nal ofPhysical Chemistry C,2009,113(42):18 110—18 114. [39]Sun Y,Wang S,Li C,et a1.Large Scale Preparation of Gra. phene Quantum Dots from Graphite with Tunable Fluorescence Properties[J].Physical Chemistry Chemical Physics,2013,15 (24):9 907—9 913. [4O]Zardini H Z,Davarpanah M,Shanbedi M,et a1.Microbial Tox. ieity of Ethanolamines-Muhiwalled Carbon Nanotubes[J].Journal foBiomedical Materials Research Part A,2014,102(6):1 774 —1 781. [41]Gupta V,Chaudhary N,Srivastava R.et a1.Lunfinscent Gra. phene Quantum Dots for Organic Photovoltaic Devices[J].Journal fothe American Chemical Society,2011,133(26):9 960— 9 963. [42]Wang H,Wang H Y,Gao B R.et a1.Exciton Diffusion and Charge Transfer Dynamics in Nano Phase—Separated P3HT/PCBM Blend Films[J].Nanoscale,2011,3(5):2 280—2 285. [43]Xue L,Li Y,Dong F,et a1.Donor-Acceptor Alternating Copol- ymers as Donor Materials for Bulk-Heterojunction Solar Cells: Effects of Molecular Structure on Film Morphology and Device Per— formance[J].Nanotechnology,2010,21(15):155 201. [44]Liu A,Dirsch O,Fang H,et a1.HMGB1 Translocation and Ex— pression is Caused by Warm Isehemia Reperfusion Injury,but not by Partila Hepatectomy in Rats[J].Experimental and Molecular Pathology,2011,91(2):502—508. [45]Dong Y,Shao J,Chen C,et a1.Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Car— bonization Degree of Citric Acid[J].Carbon,2012,50(12):4 738—4 743 [46]Zhu S,Zhang J,Tang S,et a1.Surface Chemistyr Routes to Modulate the of Graphene Quantum Dots:From Fluorescence Mechanism to Up—Conversion Bioimaging Applica— tions[J].AdvancedFunctionalMaterials,2012,22(22):4 732 —4 740. [47]Yeh T F,Teng C Y,Chen S J,et a1.Nitrogen—Doped Graphene Oxide Quantum Dots as Photocatlaysts for Overall Water-Splitting under Visible Light Illumination[J].Advanced Materials,2014, orescent Carbon—Based“Quantum”Dots[J].Nanoscale,20 1 1,3 (5):2 023—2 027. [50]Sun Y P,Wang X,Lu F,et a1.Doped Carbon Nanopartieles as a New Platform for Highly Photoluminescent Dots[J].The Journal foPhysical Chemistry C,2008,112(47):18 295—18 298. [5 1]Sevilla M,Fuertes A B.The Production of Carbon Materials by Hydrothermal Carbonization of Cellulose[J].Carbon,2009,47 (9):2 281—2 289. [52]Sevilla M,Fuertes A B.Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides[J].Chemistry—A European Journal,2009,15 (16):4 195—4 203. [53]Kang H,Kulkarni A,Stankovich S,et a1.Restoring Electrical Conductivity of Dielectrophoretieally Assembled Graphite Oxide Sheets by Thermal and Chemical Reduction Techniques[J].Car- bon,2009,47(6):1 520—1 525. [54]Liang J,Jiao Y,Jaroniec M,et a1.Sulfur and Nitrogen Dual- Doped Mesoporous Graphene Electrocatlayst for Oxygen Reduction with Synergistically Enhanced Performance[J].Angewandte Che— mie International Edition,2012,51(46):l1 496—11 500. [55]Choi C H,Chung M W,Park S H,et a1.Additional Doping ot ’Phosphorus and/or Sulfur into Nitrogen-Doped Carbon for Efficient Oxygen Reduction Reaction in Acidic Media[J].Physical Chemis— tyr Chemical Physics,2013,15(6):1 802—1 805. [56]Wohlgemuth S A,White R J,Willinger M G,et a1.A One—Pot Hydrothermal Synthesis of Sulfur and Nitrogen Doped Carbon Aero— gels with Enhanced Electroeatalytic Activity in the Oxygen Reduc- tion Reaction[J].Green Chemistry,2012,14(5):1 515— 1 523. [57]Wu W,Zhang Z,Liebeskind L S.In Situ Carboxyl Activation【J— sing a Silatropic Switch:a New Approach t0 Amide and Pcptide Consturctions[J].Journal of the American Chemical Society, 2011,133(36):14 256—14 259. [58]Somers R C,Bawendi M G,Nocera D G.CdSe Nanoerystal Based Chem-/Bio・Sensors[J].Chemical Society Reviews,2007, 36(4):579—591. (编辑王方) 

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务