dedicatedtothe60thbirthdayofIstv´anJuh´asz
organizedbytheJ´anosBolyaiMathematicalSocietyincooperationwiththePaul
Erd˝osSummerResearchCenterofMathematicsandtheAlfr´edR´enyiInstituteof
Mathematics,HungarianAcademyofSciences
Abstracts
Budapest,August8–13,2003
Supportedbythe”MathematicsinInformationSociety”project(intheframeworkoftheEuropeanCommunity’s”ConfirmingtheInternationalRoleofCommunityResearch”
programme)
ColloquiumonGeneralandSet-TheoreticTopology,Budapest,20031
Contents
A.V.Arhangel’skii:Cardinalinvariantsintopologicalspaceswithsomealgebraicstructures3F.Azarpanah:Zero-DivisorGraphofC(X)
M´aty´asBogn´ar:Anewapproachtothedegreeofpoints
33
M.G.Charalambous:EveryEberleincompactspaceYhasadenseGδmetrizablesubspaceXwithdimX≤dimY4´AkosCs´asz´ar:GeneralizedopensetsingeneralizedtopologiesAlanDow:Compactspacesofcountabletightness
MaximilianGanster:Coveringpropertiesandpreopensets
1spacesD.N.Georgiou:AunifiedtheoryofT2455566
J´anosGerlits:Onleft-separatedspaces
WilliamD.Gillam:EmbeddabilityofCountableMetricSpaces
RafalGorak:Constructionofuniformhomeomorphismsbetweenspacesequipedwiththepointwisetopology6S.D.Iliadis:Containingspacesandactionsofgroups.SaeidJafari:Non-degeneratefunctionsinthesenseofBottI.Juh´asz:ResolvabilityversusmaximalresolvabilityMasaruKada:Hechler’stheoremforidealsoftherealsO.A.S.Karamzadeh:OnKashspaces
LjubiˇsaD.R.Koˇcinac:OnhyperspacetopologiesJanKraszewski:Transitivepropertiesofideals
779
KennethKunen:TheComplexStone-WeierstrassPropertyandElementarySub-models10OttoLaback:SomeremarksontheexistenceofTychonoff-Topologiesonspace-time-manifolds10G´aborLuk´acs:Onliftedclosureoperators
JuanCarlosMart´ınez:CardinalsequencesofscatteredBooleanspaces
1111
SeithutiMoshokoa:Ontheextensionproblemforuniformlycontinuousreal-valuedmaps12EvaMurtinova:Weakernotionsofregularityandnormality
12
2Abstracts
PeterJ.Nyikos:2-to-1closedpreimagesofω1
JanPelant:WeaklyWhyburnspacesofcontinuousfunctionsonordinalsSaharonShelah:Onthespectrumofχofultra-filtersonωLajosSoukup:CardinalsequencesofscatteredspacesJanvanMill:Erd˝osspace(s)
W.Weiss:PartitioningTopologicalSpaces-60TheoremsSzymonZeberski:Largecardinalsbelowfirstmeasurablecardinal
12131313141414
ColloquiumonGeneralandSet-TheoreticTopology,Budapest,20033
Cardinalinvariantsintopologicalspaceswithsomealgebraicstructures
A.V.Arhangel’skii
(OhioUniversity&UniversityofMoscow)
(arhangel@bing.math.ohiou.edu)
Zero-DivisorGraphofC(X)
F.Azarpanah
(ChamranUniversity,Iran)
(azarpanah@ipm.ir)
jointresearchwithM.Motamedi
Wedenotethezero-divisorgraphofC(X)byΓ(C(X))andwewillassociatetheringpropertiesofC(X),thegraphpropertiesofΓ(C(X))andthetopologicalpropertiesofX.CyclesinΓ(C(X))areinvestigatedandanalgebraicandatopologicalcharacterizationisgivenforthegraphΓ(C(X))tobetriangulatedorhypertriangulated.WehaveshownthatthecliquenumberofΓ(C(X)),thecellularityofXandtheGoldiedimensionofC(X)coincide.ItturnsoutthatthedominatingnumberofΓ(C(X))isbetweenthedensityandtheweightofX.FinallywehaveshownthatΓ(C(X))istriangulatedandthesetofcentersofΓ(C(X))isadominatingsetifandonlyifthesetofisolatedpointsofXisdenseinXifandonlyiftheSocleofC(X)isanessentialideal.
Anewapproachtothedegreeofpoints
´tya´sBogna´rMa
(E¨otv¨osUniversityBudapest)(bognar@ludens.elte.hu)
Thedegreeofapoint(ortheorderofapoint)isafundamentalconceptinmender-Urysohn
curvetheory(seee.g.C.Kuratowski,TopologieII).Itcanbedefinedinarbitrarytopologicalspaces,howeversometimesitdoesnotcoincidewiththevisualrequirements.LetN0bethesetofnonnegativeintegers.
ForasubsetMofatopologicalspace(E,τ)letCompτ(M)denotethefamilyofthecompo-nentsofthesetMin(E,τ).
ThenumberofelementsofasetQwillbedenotedbyn(Q),wheren(Q)∈N0∪{∞}.
Let(E,τ)beatopologicalspace.Letp∈Eandletm∈N0.Wewritedgτ(p)|miftoeachneighbourhoodUofp(i.e.toeachU∈τ(p))thereisV∈τ(p)suchthatV⊂Uandn(Compτ(V\\{p}))≤m.
Wesaythatthedegreeofpwithrespectto(E,τ)isinfiniteandwewritedegτ(p)=∞ifthereisnom∈N0withdgτ(p)|m.Otherwisewesaythatthisdegreeisfiniteanditsdefinitionis
degτ(p)=min{m∈N0:dgτ(p)|m}.
4Abstracts
Linecomplexesarepracticallylocallyfinitegraphswithoutloops.IfWisalinecomplex,τitsnaturaltopology,τthetopologyof∪WandA={p}isanodeofWthendegτ(A)=degτ(p),whiletheusualconceptmayhaveresultsordAW=ordp(∪W).
EveryEberleincompactspaceYhasadenseGδmetrizablesubspaceX
withdimX≤dimY
M.G.Charalambous
(UniversityoftheAegean,Greece)
(mcha@aegean.gr)
AnEberleincompactspaceisacompactsubspaceofc0(S)forsomesetS.Herec0(S)isthesubspaceoftheproductofunitintervalss∈SIsconsistingofthepointsx=(xs)suchthattheset{s∈S:xs>}isfiniteforeachpositiverealnumber.
G.DimovhasprovedthataBairesubspaceYofc0(S)containsadenseGδsubspaceXwhichismetrizable,extendingaresultpreviouslyknownforYEberleincompact.WeprovethatdimX≤dimY.Thisfollowsfromcertainresultsthatweestablishconcerningthedimensionofuniformspaces.
ItshouldbenotedthatforadensemetrizablesubspaceXofacompactspaceY,wedonotnecessarilyhavedimX≤dimY.ForRoy’sexampleofametrizablespaceXwithdimX=1andindX=0hasacompactificationYwithdimY=0.
ItisalsoofinteresttonotethatT.KimuraandK.MorishitahaverecentlyprovedthateverymetrizablespaceXhasanEberleincompactificationYwithdimY=dimX.Infact,onecanevenshowthatIndY=dimX.
Generalizedopensetsingeneralizedtopologies
´´sza´rAkosCsa
(E¨otv¨osUniversityBudapest)
Inthetopologicalliterature,onefindsaseriesofclassesofsetsthataregeneralizationsofopen
sets:semi-opensets,preopensets,α-opensets,β-opensets.Eachoftheseclassesisageneralizedtopology(GT),i.eitcontains∅andtheunionofanarbitrarysubclass.
Thepurposeofthepresenttalkisamodificationofthedefinitionoftheaboveclassesinthefollowingsense.LetλbeaGTonasetX.Define,forA⊂X,
iλA={L∈λ:L⊂A},cλA={X−L:L∈λ,A⊂X−L}.Nowletusreplace,inthedefinitionofsemi-open,preopen,α-open,β-opensets,theoperationint(A)byiλandcl(A)bycλ;moreprecisely,letussaythatA⊂Xisλ-semi-openiffA⊂cλiλA,λ-preopeniffA⊂iλcλA,λ-α-openiffA⊂iλcλiλA,λ-β-openiffA⊂cλiλcλA.Denotetheseclassesbyσ(λ),π(λ),α(λ),β(λ),respectively.EachoftheseclassesisinGT,soonecanspeakoftheclassofξ(η(λ))forξ,η=σ,π,α,β.
Weshowthatinsomecasestheclassξ(η(λ))coincideswithoneoftheclassesσ(λ),π(λ),α(λ),β(λ),but,ingeneral,oneobtainsnewclassesofsets.Asanapplication,wegetcharacterizationofthegeneralizedtopologiesoftheformσ(τ)whereτisatopologyonX.
ColloquiumonGeneralandSet-TheoreticTopology,Budapest,20035
Compactspacesofcountabletightness
AlanDow
(UniversityifNorthCarolinaatCharlotte)
(adow@uncc.edu)
Coveringpropertiesandpreopensets
MaximilianGanster
(GrazUniversityofTechnology)(ganster@weyl.math.tu-graz.ac.at)jointresearchwithM.Sarsak
Weconsidervariouscoveringpropertieswhichinvolvepreopensetsintheirdefinitions.Specialattentionwillbepaidtothecaseofmetacompactness,-arecentjointresearchprojectwithProf.M.SarsakfromHashemiteUniversity,Jordan.
AunifiedtheoryofT1spaces
2D.N.Georgiou
(DepartmentofMathematics,UniversityofPatras,26500Patras,Greece)
(georgiou@math.upatras.gr)
jointresearchwithM.Caldas,S.JafariandT.Noiri
In1970,Levine[4]introducedthenotionofT1spaceswhichlieproperlybetweenT1-spaces2andT0-spaces.Dunham[3]obtainedthefollowingcharacterizationofT1-spaces:atopological21ifandonlyifeachsingletonofXisopenorclosed.Moreover,Arenasetal.[1]space(X,τ)isT2showedthatatopologicalspace(X,τ)isT1ifandonlyifeverysubsetofXisτ-closed.In1987,2semi-T1spacesareintroducedbyBhattacharyyaandLahiri[3].Sundarametal.[5]showedthat2atopologicalspace(X,τ)issemi-T1ifandonlyifeachsingletonofXissemi-openorsemi-closed.2Inthispaper,weintroducethenotionscalledm-structureswhichareweakerthantopologicalstructures.Usingthem-structures,weinvestigateaunifiedtheoryofweakseparationaxiomscontainingT1spacesandsemi-T1spaces.22References
[1]F.G.Arenas,J.DontchevandM.Ganster,Onλ-setsanddualofgeneralizedcontinuity,QuestionsAnswersGen.Topology,15(1997),3-13.
6Abstracts
[2]P.BhattacharyyaandB.K.Lahiri,Semi-generalizedclosedsetsintopology,IndianJ.Math.29(1987),375-382.[3]W.Dunham,T1-spaces,KyungpookMath.J.,17(1977),161-169.2[4]N.Levine,Generalizedclosedsetsintopology,Rend.Circ.Mat.Palermo19(2)(1970),-96.[5]P.Sundaram,H.MakiandK.Balachandran,semi-generalizedcontinuousmapsandsemi-T1
2spaces,Bull.FukuokaUniv.Ed.PartIII40(1991),33-40
Onleft-separatedspaces
´nosGerlitsJa
(Alfr´edR´enyiInstituteofMathematics)
(gerlits@renyi.hu)
´nJuha´sz,LajosSoukupandZolta´nSzentmiko´ssyjointresearchwithIstva
EmbeddabilityofCountableMetricSpaces
WilliamD.Gillam
(WesleyanUniversity)(wgillam@wesleyan.edu)
Wediscusssomegeneralresultsaboutcountablemetricspaces(allofwhichare,uptohome-omorphism,subspacesoftherationals)withanemphasisonscatteredspaces(i.e.spaceswith
nocrowdedsubspaces)andpropertiesrelatedtohomeomorphicembeddability.Usinginvariantsforrelatively”simple”spaces(thoseoffiniteCantor-Bendixsonrank),togetherwithatechnicalresultreducingquestionsofembeddabilitytothiscase,weprovetwotheorems:IfFisasetofcountablemetricspacessuchthatnospaceinFembedsinanyotherspaceinF,thenFisfinite.(Arbitrarilylargesuchfinitesetsexist.)IfGisanynon-emptysetofcountablemetricspacesthenthereissomeXinGsothat,foranyYinG,ifYembedsinXthenXembedsinY.
Constructionofuniformhomeomorphismsbetweenspacesequiped
withthepointwisetopology
RafalGorak
(INSTITUTEOFMATHEMATICSofthePolishAcademyofSciences,Warszawa,Poland)
(gorakrafal@yahoo.com)
InmytalkIwillpresentthemethodofconstructinguniformhomeomorphismsbetweenreal
ColloquiumonGeneralandSet-TheoreticTopology,Budapest,20037
valuedfunctionspacesequippedwiththetopologyofpointwiseconvergence(denotedusuallybyCp(X))inventedbyGulkoanddevelopedbymyselftosolvethefollowingproblems:
i)IwillshortlypresentmyresultconcerningcharacterizationofspacesXsuchthatCp(X)andCp(In)areuniformlyhomeomorphic(Inisthestandardn-thcube).ii)IwillalsofocusonspacesCp([0,α])whereαisanordinaland[0,α]={β:β≤α}endowedwiththestandardordertopology.Iwillgivetheuncompleteclassificationofsuchspacesupto(uniform)homeomorphismsandIwillstatetheconjecturewhatthecompleteclassificationis.
Containingspacesandactionsofgroups.
S.D.Iliadis
(DepartmentofMathematics,UniversityofPatras,26500Patras,Greece)
(iliadis@math.upatras.gr)
AllconsideredspacesareassumedtobeT0-spacesofweightlessthanorequaltoagiveninfinitecardinalτ.LetGbeanarbitrarytopologicalgroup.InparalleltothenotionsofasaturatedclassofspacesandasaturatedclassofmappingsweintroducethenotionofasaturatedclassofG-spaces.Wegivethebasicpropertiesoftheseclasses,thatis,inanysuchclassthereexistsuniversalelementsandtheintersectionofsaturatedclassesisalsosuchaclass.WeprovethatforanysaturatedclassPofspacestheclassofallG-spacesofPisasaturatedclassofG-spaces.Inparticular,wehavethefollowingconsequence.ThefollowingclassesofG-spacesaresaturated:
(1)Theclassofallregular(completelyregular)G-spaces.
(2)Theclassofallregular(completelyregular)countable-dimensionalG-spaces.
(3)Theclassofallregular(completelyregular)stronglycountable-dimensionalG-spaces.(4)Theclassofallregular(completelyregular)locallyfinite-dimensionalG-spaces.
(5)Theclassofallregular(completelyregular)G-spacesofdimensionindlessthanorequaltoanordinalα∈τ+(inparticular,αmaybeannon-negativeinteger).
Non-degeneratefunctionsinthesenseofBott
SaeidJafari
(DepartmentofMathematicsandPhysics,RoskildeUniversity,Postbox260,4000Roskilde,
Denmark)
(sjafari@ruc.dk)
Inthistalk,wediscusstheconnectivityofthenonemptylevelsofnon-degeneratefunctionsinthesenseofBottonacompactconnectedmanifold.
8Abstracts
Resolvabilityversusmaximalresolvability
´szI.Juha
(Alfr´edR´enyiInstituteofMathematics)
(juhasz@renyi.hu)
´ssyjointresearchwithL.SoukupandZ.Szentmiklo
InthisjointworkwithL.SoukupandZ.Szentmikl´ossyweproveseveralnewresultsconcerning
resolvability.OurmaintoolisaverygeneralconstructionmethodinZFCthatallowsustorefinetopologiesinsuchawaythatintheresultingfinertopologyasetwillbedenseinanopensetonlyifsomeprescribedfamilyofdensesets”forces”this.Asacorollary,foreveryuncountableregularcardinalκweconstructa0-dimensionalT2spaceXwith∆(X)=κthatisλ-resolvableforallλ<κbutisnotκ-resolvable.ThissolvesanoldquestionofCederandPearson.
WealsostrengthenarecentresultofO.PavlovbyprovingthatforeveryregularcardinalκifthespaceXsatisfies∆(X)≥κandXhasnodiscretesubspaceofsizeκ,thenXisκ-resolvable.References
[1]J.CederandT.Pearson,Onproductsofmaximallyresolvablespaces,PacificJ.Math.22(1967),31–45.
[2]O.Pavlov,Onresolvabilityoftopologicalspaces,TopologyanditsApplications,126(2002),37–47.
Hechler’stheoremforidealsofthereals
MasaruKada
(KitamiInstituteofTechnology,Kitami,JAPAN)
(kada@math.cs.kitami-it.ac.jp)
Hechler’stheorem,whichisaclassicalresultofthetheoryofforcing,isthefollowingstatement:ForapartiallyorderedsetQsuchthateverycountablesubsethasastrictupperbound,thereisaforcingnotionsatisfyingcccsuchthat,intheforcingmodel,thereisacofinalsubsetof(ωω,≤∗)(thesetofallfunctionsfromωtoωorderedbyeventuallydominatingorder)whichisorder-isomorphictoQwithrespecttoset-inclusion.
Weshowthatstatementssimilartotheaboveholdforthemeageridealandthenullidealofthereals,orderedbyset-inclusion.BothofthemareprovedusingamethodofforcingconstructionsimilartotheoneinHechler’soriginalproof.
ColloquiumonGeneralandSet-TheoreticTopology,Budapest,20039
OnKashspacesO.A.S.Karamzadeh
(ChamranUniversity,Iran)(karamzadeh@cua.ac.ir)jointresearchwithA.A.Staji
Email:karamzadeh@cua.ac.irCoauthors:Title:Abstract:Letcbeacardinalnumber,thenacommutativeringRissaidtobeac-Kash-ringifidealswithgeneratingsetofcardinalitylessthancarenon-essentialandaremaximalwithrespecttothisproperty.AtopologicalspaceXiscalledc-KashifC(X)isac-Kashring.WeobservethatXisanalmostP-spaceifandonlyifXisℵ0-Kash.ItisalsoshownthatXisℵ1-KashifandonlyifXisapseudocompactalmostP-space.XandβXareshowntobec-Kashforthesamec.Someotherpropertiesofc-Kashspacesarediscussed.
OnhyperspacetopologiesˇinacLjubiˇsaD.R.Koc
(FacultyofPhilosophy,UniversityofNiˇs,18000Niˇs,Yugoslavia)
(kocinac@archimed.filfak.ni.ac.yu)
ForaspaceXconsiderthesetofallclosedsubsetsofXendowedwithdifferent(upper)
topologies.WediscussdualitybetweenXanditshyperspacesconsideringsomepropertiesgivenintermsofselectionprinciples.
Transitivepropertiesofideals
JanKraszewski
(UniversityofWroclaw,Poland)(kraszew@math.uni.wroc.pl)
Weconsideraninvariantσ-idealofsubsetsofaninfiniteAbeliangroup(G,+).Forsuchanidealwedefinethefollowingcardinalcoefficients.
addt(J)=min{|A|:A⊆J&¬(∃B∈J)(∀A∈A)(∃g∈G)A⊆B+g},add∗t(J)=min{|T|:T⊆G&(∃A∈J)A+T∈J},covt(J)=min{|T|:T⊆G&(∃A∈J)A+T=G},
coft(J)=min{|B|:B⊆J&BisatransitivebaseofJ},
whereafamilyB⊆JiscalledatransitivebaseifforeachA∈JthereexistsB∈Bandg∈GsuchthatA⊆B+g.Firsttwoonesarebothcalledtransitiveadditivity.Thelattertwoonesarecalledtransitivecoveringnumberandtransitivecofinality,respectively.
10Abstracts
WesaythatanidealJisκ−translatableif
(∀A∈J)(∃B∈J)(∀T∈[G]κ)(∃g∈G)A+T⊆B+g.
WedefineatranslatibilitynumberofJasfollows
τ(J)=min{κ:Jisnotκ−translatable}.
WeintroducealsosomeoperationsonJ.s(J)={A⊆G:(∀B∈J)A+B=G},g(J)={A⊆G:(∀B∈J)A+B∈J},
Weinvestigatepropertiesoftheseoperationsandcardinalcoefficients.Inparticular,weshowwhathappensforJ=S2,whereS2denotestheleastnontrivialσ-idealofsubsetsoftheCantorspace2ω.
TheComplexStone-WeierstrassPropertyandElementarySubmodels
KennethKunen
(UniversityofWisconsin)(kunen@math.wisc.edu)
ThecompactHausdorffspaceXhastheComplexStone-WeierstrassProperty(CSWP)iffXsatisfiesthecomplexversionoftheStone-WeierstrassTheorem(thatis,everyalgebraofcontinuouscomplex-valuedfunctionsonXwhichseparatespointsandcontainstheconstantfunctionsisdenseinC(X)).
ByresultsofW.Rudinandothers,theCSWPwasknowntobetrueofallcompactscatteredspaces,andfalseofspacescontainingacopyofeithertheCantorsetorβN.Itwasnotknowntobetrueofanynon-scatteredspace.
Byapplyingelementarysubmodeltechniques,onecanshowthatinfacttheCSWPholdsforanumberofnon-scatteredcompactspaces.Forexample,acompactLOTSsatisfiestheCSWPiffitdoesnotcontainacopyoftheCantorset.
SomeremarksontheexistenceofTychonoff-Topologieson
space-time-manifolds
OttoLaback
Name:
UniversityofTechnologyGrazDept.mathematic
Therearenaturalsemimetrictopologiesonspace-timemanifoldsbutuntilnownosuchcom-pletelyregulartopologies.Wetrytoexplainthisopenproblemandwillgivesomeremarksonmodellingthecausalityofspace-timemanifolds.
ColloquiumonGeneralandSet-TheoreticTopology,Budapest,200311
Onliftedclosureoperators
´borLuka´csGa
(DepartmentofMathematicsStatistics,YorkUniversity,4700KeeleStreetToronto,Ontario,M3J1P3Canada)
(lukacs@mathstat.yorku.ca)
ForatopologicalgroupG,wedenotebyκG:G→bGtheBohr-compactificationofG,andonesetsG+=κG(G);G+isadensesubgroupofbG.TheBohr-closureofasubsetA⊆Gistheclosure
ofAintheinitialtopologyinducedonGbythemapκG.Inotherwords,cb(A)=
AgroupKiscalledcb-compactiftheprojectionπH:K×H→Hmapscb-closedsubgroupsoftheK×Hontocb-closedsubgroupsofH.Weobservethefollowingpropertyofcb:
Theorem.AtopologicalgroupGiscb-compactifandonlyifitG+=bG(i.e.κGissurjective).AclosureoperatoronX([1])isafamilyofmapscX:sub(X)−→sub(X),X∈X,suchthat:(1)m≤cX(m)forallm∈sub(X)(extensive);(2)m≤nimpliescX(m)≤cX(n)forallm,n∈sub(X)(monotone);(3)f(cX(m))≤cY(f(m))forallm∈sub(X),foreverymorphismf:X→Y(morphismsarecontinuous).
Amorphismf:X→YinXisc-preservingifcY(f(m))=f(cX(m))foreverym∈sub(X).Following[2],anobjectX∈Xisc-compactifforeveryY∈XtheprojectionπY:X×Y→Yisc-preserving.
NoticethattheclosureoperatorcbwasobtainedastheliftingoftheKuratowskiclosureoperatorthroughtheBohr-reflection.Itturnsoutthatwecanliftanyclosureoperatorfromaniceenoughsubcategory.LetAbeanepireflectivesubcategoryofXwithreflectorRandunitρ.GivenaclosureoperatorconA,ccanbeliftedtoaclosureoperatorcρonXdefinedby
−1
cρX(m)=ρX(c(ρX(m))).WeshowananalogueoftheTheorem:undermildconditions,X∈Xiscρ-compactifandonlyifRXisc-compact.1.M.M.Clementino,E.Giuli,andW.Tholen.Portugal.Math.,53(4):397–433,1996.
Topologyinacategory:compactness.
G+
−1
κG(κG(A)).
2.DikranDikranjanandEraldoGiuli.Compactness,minimalityandclosednesswithrespecttoaclosureoperator.InCategoricaltopologyanditsrelationtoanalysis,algebraandcombinatorics(Prague,1988),pages284–296.WorldSci.Publishing,Teaneck,NJ,19.
CardinalsequencesofscatteredBooleanspaces
JuanCarlosMart´ınez
(FacultatdeMatem`atiques,UniversitatdeBarcelona,GranVia585,08007Barcelona,Spain)
(martinez@mat.ub.es)
TheCantor-Bendixsonprocessfortopologicalspacesisdefinedasfollows.SupposethatXis
atopologicalspace.Then,foreveryordinalαwedefinetheα-derivativeofXby:X0=X;if
12Abstracts
α=β+1,XαisthesetofaccumulationpointsofXβ;andifαisalimit,Xα={Xβ:β<α}.Then,Xisscattered,ifXα=∅forsomeordinalα.
TheCantor-Bendixsonprocesspermitsustosplitascatteredspaceintolevels.SupposethatXisascatteredspace.WedefinetheheightofXbyht(X)=theleastordinalαsuchthatXαisfinite.Forα Ontheextensionproblemforuniformlycontinuousreal-valuedmaps SeithutiMoshokoa (UniversityofSouthAfrica,PRETORIA,SouthAfrica) (moshosp@unisa.ac.za) Itiswellknownthatuniformlycontinuousmapsbetweenmetricspacesadmitsauniqueuni-formlycontinuousextensiontothecompletion.However,therearemapsonmetricspaceswithextensionstothecompletionwhicharenotuniformlycontinuous.Wegiveasimpleresultconcern-inguniformlycontinuousmapsonboundedsubsetswhichextendstheclassicalTheoremreferredtoabove.FinallyadiscussionofananalogueoftheclassicalTietzeextensionTheoreminthiscontextwillalsobepresented. Weakernotionsofregularityandnormality EvaMurtinova (CharlesUniversity,Prague,CzechRepublic) (murtin@karlin.mff.cuni.cz) 2-to-1closedpreimagesofω1 PeterJ.Nyikos (UniversityofSouthCarolina,Columbia,SC29208) Althoughtheyareaveryspecializedclassofspaces,2-1closedpreimagesofω1haveplayedanimportantheuristicroleinthetheoryoflocallycompactandcountablycompactspaces.Twicealreadythesolutionofaprobleminvolvingsuchspaceshasmadepossiblemajoradvancesinourunderstandingofcountablycompactspaces.In1986,Fremlin’sproof thatsuchspacesalwayscontaincopiesofω1undertheProperForcingAxiom(PFA)wasthekeytoafloodofresultsculminatinginBalogh’sproofsthatthePFAimpliesthat(1)everyfirstcountable,countablycompactHausdorffspaceiseithercompactorcontainsacopyofω1,and(2)everycompactspaceofcountabletightnessissequential.Tenyears later,statement(1)wasshowncompatiblewithCH,with2-1closedpreimagesofω1againturningouttocapturemostofthedifficultiesinvolved.Nowthereisathirdsetofproblems ColloquiumonGeneralandSet-TheoreticTopology,Budapest,200313 towhichitishopedthatthesespecialspaceswillprovidetheneededinsight:Isitconsistentthateverylocallycompact,hereditarilystronglycollectionwiseHausdorffspaceisnormal?col-lectionwisenormal?countablyparacompact?Theanswersarenegativeunder♦butthePFAisareasonablecandidateforpositiveanswers. WeaklyWhyburnspacesofcontinuousfunctionsonordinals JanPelant ˇa25,11567Prague1,CzechRepublic)(MathematicalInstituteofAcad.Sci.ofCzechRep.,Zitn´ (pelant@math.cas.cz) jointresearchwithAngeloBella WecharacterizethoseordinalsξforwhichCp(ξ)isaweaklyWhyburnspace.Asabyproduct weobtainthecoincidenceoftheFr´echetpropertyandtheWhyburnoneonCp(ξ). Onthespectrumofχofultra-filtersonω SaharonShelah (HebrewUniversityofJerusalem) (shelah@math.huji.ac.il) Weinvestigatewhatthissetofcardinalscanbe(whenthecontinuumislarge,naturally)aswellasπχcontinuingBrendleShelah[BnSh2].Inparticular,thosesetsmaybenon-convex(seeproblem5there). Cardinalsequencesofscatteredspaces LajosSoukup (Alfr´edR´enyiInstituteofMathematics) (soukup@math-inst.hu) ´szandZ.Szentmiklo´ssyjointresearchwithI.Juha WeshowthatifweaddanynumberofCohenrealstothegroundmodelthen,inthegeneric extension,alocallycompactscatteredspacehasatmost(2ℵ0)Vmanylevelsofsizeω. WealsogiveacompleteZFCcharacterizationofthecardinalsequencesofregularscatteredspaces.Althoughtheclassesoftheregularandofthe0-dimensionalscatteredspacesaredifferent,weprovethattheyhavethesamecardinalsequences. 14Abstracts Erd˝osspace(s)JanvanMill (VrijeUniversiteit,Amsterdam) (vanmill@cs.vu.nl) LetEdenoteErd˝osspace,i.e.,thesetofallvectorsin2allcoordinatesofwhicharerational. TheirrationalversionofE,i.e.,thesetofallvectorsin2allcoordinatesofwhichareirrational,isdenotedbyEc.ItisknownthatbothEandEcare1-dimensionalandtotallydisconnected.Theorem(Dijkstra,vanMill,Stepr¯ans).Ecisnothomeomorphictoitscountableinfiniteproduct. Theorem(Dijkstra,vanMill).Eishomeomorphictoitscountableinfiniteproduct.IfXisaspacethenH(X)isthegroupofallhomeomorphismsofXwiththecompact-opentopology. Theorem(Dijkstra,vanMill).LetX=Rn,n≥2,andletDbeacountabledensesubsetofX.Thesubgroup{h∈H(X):h(D)=D}ofH(X)ishomeomorphictoE. PartitioningTopologicalSpaces-60Theorems W.Weiss (UniversityofToronto)(weiss@math.toronto.edu) Welookbackatsomeofthetheoremsaboutpartitioningtopologicalspacesandconsidersomeoftheremainingopenproblems.Afterabrieflookatthehigherdimensionalcasesweconcentrateontheonedimensionalcase.WeshowhowtouseCohenrealstopartitionmetricspaces. Largecardinalsbelowfirstmeasurablecardinal SzymonZeberski (InstituteofMathematics,WroclawUniversity,,Poland) (szebe@math.uni.wroc.pl) ´jointresearchwithJacekCichon Weusethefollowingnotation.M(κ)denotesκisameasurablecardinal;SI(κ)–κisstrongly inaccesible;WC(κ)–κisweaklycompact. Weareinterestedinthreeclassesofcardinals:indescribablecardinals,subtlecardinalsandpartitioncardinals.Letusrecallthefolowingdefinition. ColloquiumonGeneralandSet-TheoreticTopology,Budapest,200315 1 Definition.CardinalnumberκisΠ1n–indescribable(Πn−IND(κ))iffforeveryφwhichisΠ1=φn–sentence(ofalanguagewithonepredicateA),foreverysubsetAofRκif(Rκ,A,∈)|thenthereexistsα<κsuchthat(Rα,A∩Rα,∈)|=φ. ItiswellknownthatΠ1⇒SI(κ)and(Π1⇒WC(κ).0−IND(κ)⇐1−IND(κ)⇐1 ForΠn–indescribableκletDΠ1(κ)={X⊆κ:(∀φ∈Π1=φ−→n)(∀A⊆Rκ)((Rκ,A,∈)|n (∃α∈X)(Rα,A∩Rα,∈)|=φ)}. Thesecondclassofcaldinalsweareinterestedinaresubtlecardinals. Definition.LetA⊆P(κ).WesaythatκisA–subtleiffforeverysequence(Aα)α∈κsuchthat(∀α∈κ)(Aα⊆α),foreveryclosedunboundedsetC⊆κthereexistsasetX∈AsuchthatX⊆Cand (∀α,β∈X)(α<β→Aα=Aβ∩α). Definition.Letκbeacardinalnumber.1.κissubtle(ST(κ))iffκis[κ]2–subtle. 2.κisalmostineffable(AINF(κ))iffκis[κ]κ–subtle. 11 3.κisΠ1–subtle.n–subtle(Πn−SB(κ))iffΠn−IND(κ)andκisDΠ1n Thethirdclassarepartitioncardinals.Foranordinalnumberαlet ηα=min{λ:λ→(α)<ω}. Definition.Letκbeacardinalnumber. 1.κisanErd¨oscardinal(E(κ))iffthereexistsalimitordinalαsuchthatκ=ηα.2.κisaRamseycardinal(R(κ))iffκ→(κ)<ω. 113.κisaΠ1n–Ramseycardinal(Πn−R(κ))iffΠn−IND(κ)and (κ))(∀n∈ω)(|F([H]n)|=1).(∀F:[κ]<ω→2)(∃H∈DΠ1 n WewriteA−→BifA(κ)impliesB(κ).A−→BdenotesthatifA(κ)then{λ<κ:B(λ)}isstationaryinκ. ∗A−→BmeansthatifA(κ)then{λ<κ:B(λ)}hascardinalityκ.Ourresultssumupthefollowingtheorem.Theorem.Wehavethefollowingdiagram 16Abstracts rrhMr rjrjrr... ¤ ¤h~¤...¤ ¤¤hh¤¤h~~¤¤cccc..1¤Π0−RΠ1−SB.¤1 ¤¤¤hhh¤ ~~¤¤cccccc¤1¤−INDΠ1RΠ0−SB3 ¤¤ ¤¤h*hh¤~~¤ cccccc¤¤1EAINFΠ−IND2¤¤¤¤hh¤¤~~ cccc¤1STΠ−IND1¤¤ h¤~ ccΠ1−IND0hcc1 Π1−R References [1]W.Boos,Lecturesonlargecardinalaxioms,ProccedingsoftheInternationalSummerInstituteandLogicColloquium,Kiel1974. [2]F.Drake,Settheory,anintroductiontolargecardinals,NorthHolland1974.[3]A.Kanamori,TheHigherInfinite,Springer-VerlagBerlinHeidelberg1994. [4]K.Kunen,Indescribabilityandthecontinuum,ProccedingsofSymposiainPureMathematics,VolumeXIII,PartI,pp.199-203. Keywordsandphrases.Measurablecardinal;Π1n–indescribablecardinal;stationaryset.2000AMSSubjectClassification.03E55,03E10. 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务