对实数浮点矩阵进行奇异值分解
void cvSVD( CvArr* A, CvArr* W, CvArr* U=NULL, CvArr* V=NULL, int flags=0 );
函数 cvSVD 将矩阵 A 分解成一个对角线矩阵和两个正交矩阵的乘积:
这里 W 是一个奇异值的对角线矩阵,它可以被编码成奇异值的一维向量,U 和 V 也是一样。 所有的奇异值都是非负的并按降序存储。(U 和 V 也相应的存储)。
SVD 算法在数值处理上已经很稳定,它的典型应用包括:
奇异值回代算法(back substitution)
void cvSVBkSb( const CvArr* W, const CvArr* U, const CvArr* V, const CvArr* B, CvArr* X, int flags );
函数 cvSVBkSb 为被分解的矩阵 A 和矩阵 B 计算回代逆(back substitution) (参见 cvSVD 说明) :
这里
epsilon 是一个依赖于矩阵数据类型的的很小的数。该函数和 cvSVD 函数被用来执行 cvInvert 和 cvSolve, 用这些函数 (svd & bksb)的原因是初级函数(low-level) 函数可以避免高级函数 (inv & solve) 计算中内部分配的临时矩阵。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务