您好,欢迎来到年旅网。
搜索
您的当前位置:首页Python-KNN算法实践

Python-KNN算法实践

来源:年旅网

首先是直接调用sklearn库里面KNN相关的函数使用KNN算法。
数据集采用datasets中的iris,iris是常用的分类实验数据集。

from sklearn import neighbors
#邻近算法的包
from sklearn import datasets
#导入数据集

knn = neighbors.KNeighborsClassifier()

iris = datasets.load_iris()

#print iris

knn.fit(iris.data, iris.target)
predictedLabel = knn.predict([0.1,0.2,0.3,0.4])
print predictedLabel

直接调用sklearn中的KNN算法很简单,下面用Python自己实现以下。

import csv
import random
import math
import operator

#载入dataset,将其按split比例分为训练集和测试集装入trainingSet[]和testSet[]中
def loadDataset(filename, split, trainingSet=[], testSet=[]):
    with open(filename, 'rb') as csvfile:
        lines = csv.reader(csvfile)
        dataset = list(lines)
        for x in range(len(dataset)-1):
            for y in range(4):
                dataset[x][y] = float(dataset[x][y])
            if random.random()>=split:
                testSet.append(dataset[x])
            else:
                trainingSet.append(dataset[x])

#计算两个length维实例的距离,运用math中的函数,将结果返回             
def euclideanDistance(instance1, instance2, length):
    distance = 0
    for x in range(length):
        distance += pow((instance1[x] - instance2[x]), 2)
    return math.sqrt(distance)

#将训练集和需要测试的样例和K传入,得到与测试样例最近的k个样例,将其类型放入neighbors[]中,返回neighbors
def getNeighbors(trainingSet, testInstance, k):
    distances = []
    length = len(testInstance)-1
    for x in range(len(trainingSet)):
        dist = euclideanDistance(testInstance, trainingSet[x], length)
        distances.append((trainingSet[x], dist))

    distances.sort(key = operator.itemgetter(1))
    neighbors = []
    for x in range (k):
        neighbors.append(distances[x][0])
    return neighbors

#用一个字典classVotes,以少数服从多数,将类型最多的一种结果返回
def getResponse(neighbors):
    classVotes = {}
    for x in range(len(neighbors)):
        response = neighbors[x][-1]
        if response in classVotes:
            classVotes[response] += 1
        else:
            classVotes[response] = 1
    sortedVotes = sorted(classVotes.iteritems(), key = operator.itemgetter(1), reverse = True)
    #降序排列
    return sortedVotes[0][0]

#将测试集列表和预测结果列表传入,一一比对,对测试的正确率进行计算返回结果
def getAccuracy(testSet, predictions):
    correct = 0
    for x in range(len(testSet)):
        if testSet[x][-1] == predictions[x]:
            correct += 1
    return (correct/float(len(testSet))) * 100.0

def main():
    trainingSet = []
    testSet = []
    split = 0.67
    loadDataset(r'D:\irisdata.txt', split, trainingSet, testSet)
    #导入iris数据集的txt文件
    print 'Train set:' + repr(len(trainingSet))
    print 'Test set:' + repr(len(testSet))

    predictions = []
    k = 3
    for x in range(len(testSet)):
        neighbors = getNeighbors(trainingSet, testSet[x], k)
        result = getResponse(neighbors)
        predictions.append(result)
        print('> predicted=' + repr(result) + ', octual=' + repr(testSet[x][-1]))
    accuracy = getAccuracy(testSet, predictions)
    print('Accuracy: ' + repr(accuracy) + '%')
#调用自定义的函数进行实践打印结果     
main()        

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- oldu.cn 版权所有 浙ICP备2024123271号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务